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Simulating quantum contextuality with classical systems requires memory. A fundamental yet open
question is what is theminimummemory needed and, therefore, the precise sense in which quantum systems
outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-
independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence
of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to
simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not
contain any oracular information. In particular, we show that, while classically simulating two qubits tested
with the Peres-Mermin set requires log2 24 ≈ 4.585 bits, simulating a single qutrit tested with the
Yu-Oh set requires, at least, 5.740 bits.
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Introduction.—Quantifying the resources needed to sim-
ulate quantum phenomena with classical systems is crucial
to making precise the sense in which quantum systems
provide an advantage over classical ones. While the extra
resources needed for simulating entanglement and quantum
nonlocality (i.e., the quantum violation of Bell inequalities
[1]) have been studied extensively [2–8], the resources
needed to simulate quantum contextuality [9,10], a natural
generalization of quantum nonlocality to the case of non-
spacelike separated systems and witnessed by the quantum
violation of noncontextuality inequalities [11–15], have
been less explored [16–18]. In a nutshell, while simulating
quantum nonlocality with classical systems requires super-
luminal communication [2,5–8], simulating quantum con-
textuality requires memory [16–18] or, more precisely, the
ability of storing and recovering a certain amount of
classical information. It is known that, in some cases,
the required memory is larger than the information-carrying
capacity of the corresponding quantum system [16]. The
problem is that only lower bounds to the minimummemory
are known for some particular scenarios [16,18]. In
addition, it is not known how the minimum memory scales
with, e.g., the size of the set of possible measurements.
A particularly interesting case is that of quantum state-

independent contextuality (QSIC) in experiments with
sequential measurements [12–15] on a single recycled
quantum system [16,19,20]. In this case, a single quantum
system is submitted to an unlimited sequence of measure-
ments, randomly chosen from a finite set of measurements,
as illustrated in Fig. 1. After eachmeasurement, the outcome

is observed and recorded. The set of measurements has the
peculiarity of being able to produce contextuality no matter
what is the initial quantum state of the system. These sets are
called QSIC sets [21,22] and, for each of them, there are
optimal combinations of correlations for detecting contex-
tuality [15]. The interest of this case comes from the fact that
unbounded strings of data with contextual correlations can
be produced using a single system initially prepared in an
arbitrary state [20], a situation that strongly contrasts with
the case of nonlocality generated through the violation of a
Bell inequality, where thousands of spacelike separated
pairs of quantum systems in an entangled quantum state are
needed. The question we want to address in this Letter is
what is the minimal amount of memory a classical system
would need to simulate the predictions of quantum theory
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FIG. 1. Contextuality experiment on a recycled system. Buttons
represent possible measurements. Light bulbs represent possible
outcomes. We consider experiments in which there are as many
buttons as elements of the QSIC set, and all of them have two
outcomes.
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for QSIC experiments with unlimited sequential measure-
ments. Contrary to the previous approaches [16,18], we aim
at simulating all statistics arising in quantum theory and not
only the perfect correlations leading to a violation of a
contextuality inequality. We consider the most general
simulation under the restriction that the classical model
used for simulation should not contain oracular information,
as explained below.
Scenario.—We consider ideal experiments in which

successive measurements are performed on a single quan-
tum system at times t1 < t2 < � � �. At each ti, a measure-
ment belonging to a QSIC set is randomly chosen and
performed. We assume that the quantum state after the
measurement at ti is the quantum state before the meas-
urement at tiþ1. The process is repeated infinitely many
times. Our aim is to extract conclusions valid for any QSIC
set. However, for the sake of clarity, we will present our
results using two famous QSIC sets.
The Peres-Mermin set.—The QSIC set with the smallest

number of observables known has nine 2-qubit observables
and it is shown in Fig. 2. It was introduced by Peres [23]
and Mermin [24] and first implemented in experiments
with sequential measurements by Kirchmair et al. [25] on
trapped ions and by Amselem et al. [26] on single photons.
In addition, it has been recently implemented on entangled
photons by Liu et al. [27].
When one uses this set for unlimited sequential mea-

surements on a single system, from the moment two
different observables that are in the same row or column
in Fig. 2 are measured consecutively, the system remains in
one of the 24 quantum states defined in Fig. 2. After that,

any other subsequent measurement leaves the system in one
of these 24 quantum states and each of them occurs with the
same probability.
The Yu-Oh set.—As proven in Ref. [22], the QSIC set

with the smallest number of observables represented by
rank-one projectors has 13 single-qutrit observables. It was
introduced by Yu and Oh [14] and is a subset of a QSIC set
previously considered by Peres [28]. Its associated optimal
noncontextuality inequality was found by Kleinmann et al.
[15]. It inspired a photonic experiment by Zu et al. [29] (see
also Amselem et al. [30]) and was implemented as an
experiment with sequential measurements on a single ion
by Zhang et al. [31], and, recently, it was used to implement
the scheme in Fig. 1 by Leupold et al. [20].
When one uses the Yu-Oh set for unlimited sequential

measurements on a single system, if at any point the system
is in one of the 13 pure states of the Yu-Oh set and one
measures one randomly chosen projector onto one of these
13 states, then the number of possible postmeasurement
states does not remain constant but grows with the number
of sequential measurements. In fact, some states are more
probable than others (see Fig. 3). This contrasts with the
case of the Peres-Mermin set, where the number of possible
postmeasurement states is constant and all states are
equally probable.
The notion of simulation and relation to previous

works.—When talking about a classical simulation of a
temporal process, it is important to specify what precisely
shall be simulated and which conditions a simulation
apparatus should meet. A general strategy for simulating
temporal correlations is to use hidden Markov models
(HMMs) [34] or, when deterministic effects are considered,
Mealy machines [35]. There, the simulation apparatus is
always in a definite internal state k, and for each internal
state k, there is an output mechanism (e.g., a table Rk
containing all the results of the potential measurements)
and an update mechanism (e.g., a table Uk that describes
the change of the internal state depending on the meas-
urement). In such a model, however, it can easily happen
that the simulation apparatus contains information about
the future that cannot be derived from the past. By this we
mean the following: consider two persons, where the first
one only knows the current internal state of the machine
and the second one only knows the past observation of
measurements and results. Clearly, if the simulation appa-
ratus simulates all the correlations properly, the first person
can predict the future as well as the second person. For
many processes, however, it can happen that the first person
can predict the future better, e.g., if the given internal state k
predicts a deterministic outcome for the next measurement,
which cannot be deduced from the past. In this way, a
simulation apparatus can contain oracular information (i.e.,
information that cannot be obtained from the past) [36].
For our simulation, we restrict our attention to a

simulation without oracular information. This leads to

FIG. 2. Observables in the Peres-Mermin set. z1 denotes the

quantum observable represented by the operator σð1Þz ⊗ 1ð2Þ.
Similarly, zx denotes σð1Þz ⊗ σð2Þx . Observables in each row or
column are mutually compatible and their corresponding oper-
ators have four common eigenstates. In the figure, these eigen-
states are represented by straight lines numbered from 1 to 24. For

example, quantum state j2i is the one satisfying σð1Þz ⊗ 1ð2Þj2i ¼
j2i, 1ð1Þ ⊗ σð2Þz j2i ¼ −j2i, and σð1Þz ⊗ σð2Þz j2i ¼ −j2i.
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the notion of causal models and, more specifically, to ε
transducers, as explained below. These are also so-called
unifilar processes, meaning that they are special HMMs,
where the output derived from the internal state k deter-
mines the update of the internal state. We note that with
more general HMMs the memory required for the simu-
lation can sometimes be reduced [36,37] and that such

models have been used to simulate the Peres-Mermin set
[16,18]. Our restriction to causal models, however, is
physically motivated by the demand that only the past
observations should be used for simulating the future.
Tools.—To calculate the minimum memory that a

classical system must have, a key observation is that our
ideal experiments are examples of stochastic input-output
processes that can be analyzed in information-theoretic

terms. A stochastic process Y
↔

is a one-dimensional chain
…; Y−2; Y−1; Y0; Y1; Y2;… of discrete random variables
fYtgt∈Z that take values fytgt∈Z over a finite or countably

infinite alphabet Y. An input-output process Y
↔jX↔ with

input alphabet X and output alphabet Y is a collection of

stochastic processes Y
↔jX↔ ≡ fY↔jx↔g

x
↔∈X

↔, where each such

process Y
↔jx↔ corresponds to all possible output sequences

Y
↔

given a particular bi-infinite input sequence x
↔
. It can be

represented as a finite-state automaton or, equivalently, as a
hidden Markov process. In our experiment, xt is the
observable measured at time t and yt is the corresponding
outcome. By X⃖ we denote the chain of previous measure-
ments, …; Xt−2; Xt−1, by X⃗ we denote Xt; Xtþ1;…, and by

X
↔

we denote the chain …; Xt−1; Xt; Xtþ1;…. Similarly, Y⃖,

Y⃗, and Y
↔

denote the past, future, and all outcomes,

respectively, while Z⃖, Z⃗, and Z
↔

denote the past, future,
and all pairs of measurements and outcomes. For deriving
physical consequences, we have to consider the minimal
and optimal representation of this process.
As proven in Ref. [38], the fact that each of our

experiments is an input-output process implies that for
each of them there exists a unique minimal and optimal
predictor of the process, i.e., a unique finite-state machine
with minimal entropy over the state probability distribution
and maximal mutual information with the process’s future
output given the process’s input-output past and the
process’s future input. This machine is called the process’s
ε transducer [38] and is the extension of the so-called ε
machines [39,40]. An ε transducer of an input-output
process is a tuple (X , Y, S, T ) consisting of the process’s
input and output alphabets X and Y, the set of causal states
S, and the set of corresponding conditional transition
probabilities T . The causal states st−1 ∈ S are the equiv-
alence classes in which the set of input-output pasts Z⃖ can
be partitioned in such a way that two input-output pasts z⃖
and z⃖0 are equivalent if and only if the probabilities
PðY⃗jX⃗; Z⃖ ¼ z⃖Þ and PðY⃗jX⃗; Z⃖ ¼ z⃖0Þ are equal. The causal
states are a so-called sufficient statistic of the process. They
store all the information about the past needed to predict the
output and as little as possible of the remaining information
overhead contained in the past. The Shannon entropy over
the stationary distribution of the causal states HðSÞ is the
so-called statistical complexity and represents the

FIG. 3. Assuming that the experiment starts with a qutrit in one
of the 13 quantum states of the Yu-Oh set, represented by the dots
over a semisphere in (a), the successive figures show the possible
postmeasurement quantum states after one (b), three (c), five (d),
and seven measurements (e). The number of possible postmea-
surement states is 25, 265, 3649, and 50 293, respectively. All the
states lie in one of the 13 semicircles corresponding to the states
with real components orthogonal to the 13 states of the Yu-Oh set.
However, not all of them occur with the same probability. To
illustrate this, the volume of each point in (e) is proportional to the
probability with which the corresponding state appears. Collec-
tively, these figures exemplify the typical behavior of QSIC sets
(e.g., [32,33]).
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minimum internal entropy needed to be stored to optimally
compute future measurement outcomes (this quantity gen-

erally depends on how our measurements X
↔

are selected;
here, we assume each Xt is selected from a uniform
probability distribution). The set of conditional transition
probabilities T ≡ fPðStþ1 ¼ sj; Yt ¼ yjSt ¼ si; Xt ¼ xÞg
governs the evolution.
Minimum memory needed to simulate QSIC.—The ε

transducers associated with the QSIC experiments have a
particular property, namely, that there is a one-to-one
correspondence between causal states st and quantum
states jψ ti ∈ Φ, where Φ is the set of possible states
occurring after a measurement (for completeness, a proof is
presented in the Supplemental Material [41]). Therefore,
the minimum number of bits a finite-state classical machine
must have to simulate the predictions of quantum theory for
a QSIC experiment with unlimited sequential measure-
ments chosen uniformly at random is given by the Shannon
entropy

H ¼ −
X

i

pi log2 pi: ð1Þ

In (1), pi is the probability of each quantum state
achievable during the experiment’s occurrence and, in
general, depends on the distribution in which different
measurements are chosen.
For the Peres-Mermin set, there are 24 causal states, each

occurring with equal probability (see Fig. 2). Hence, a
simulation with an ε transducer requires log2ð24Þ ¼ 4.585
bits to imitate a quantum system of 2 qubits. This classical
memory is significantly higher than the classical informa-
tion-carrying capacity of the quantum system that produces
these correlations.
For the Yu-Oh set, the calculations are more involved.

The reason is that the longer the measurement sequence is,
the more possible quantum states can occur as postmea-
surement states. In addition, the quantum states do not
occur with the same probability; see Fig. 3. For small
sequences up to length ten, however, all the states and
probabilities can be analytically computed. The results
imply that if only the last ten measurements and results are
included, at least 5.740 bits are required for the simulation
(see Fig. 4).
A proper comparison with the amount of memory

required to simulate noncontextual sets is obtained by
noticing that the memory required to reproduce the pre-
dictions of quantum mechanics when we restrict the
measurements to subsets (of the QSIC sets) that cannot
produce contextuality, is 2 bits for the Peres-Mermin set
and log2 3 ≈ 1.585 bits for the Yu-Oh set. These values are
obtained as follows. Contextuality is an impossibility of a
joint probability distribution over a single probability
space. For sequences of projective measurements, incom-
patibility implies the nonexistence of a joint probability

distribution. Therefore, the memory needed to simulate
noncontextual sets is the one required to reproduce the
predictions of quantum mechanics for subsets of mutually
compatible measurements of the QSIC set, which is
log2 d bits for any QSIC set of dimension d. Notice that
contextuality requires incompatibility, but also that
measurements can be grouped into mutually compatible
subsets so that each measurement belongs to at least two of
them. Therefore, simulating a set of incompatible mea-
surements not restricted by these rules may require more
memory.
One might conjecture that the minimal memory neces-

sary to classically simulate QSIC must be related to the
degree of contextuality. However, the relation is difficult to
trace. For example, while the minimal memory necessary to
simulate classically the Peres-Mermin and Yu-Oh sets is
larger for Yu-Oh, the degree of contextuality that can be
measured by, e.g., the ratio between the violation and the
noncontextual bound for the optimal noncontextuality
inequalities [15] is 1.5 for Peres-Mermin and 1.107 for
Yu-Oh, showing that contextuality is higher for Peres-
Mermin. The same conclusion can be reached by adopting
other measures of contextuality [42,43]. Therefore, under-
standing the connection between memory and the degree of
contextuality is an interesting open problem that should be
addressed in the future. Here, also the effects of noise and
imperfections should be considered.
Conclusions.—The question of which classical resour-

ces are needed for simulating quantum effects is central
for the connection of the foundations of quantum theory
with quantum information. By applying the tools of
complexity science, we have shown how to calculate
the amount of memory a classical system would need to

FIG. 4. Classical memory in bits needed to simulate sequential
Yu-Oh and Peres-Mermin experiments, as given by Eq. (1), as a
function of the number of steps, as defined in the caption of Fig. 3
for the case of Yu-Oh (and, similarly, for the case of Peres-
Mermin). Values are obtained from considering all possible
measurement sequences of a given number of steps and then
analytically calculating the corresponding results and postmea-
surement states.
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simulate quantum state-independent contextuality in the
case of a single quantum system submitted to an infinite
sequence of measurements randomly chosen from any
finite set. Our result precisely quantifies the quantum vs
classical advantage of a phenomenon, quantum state-
independent contextuality, discovered 50 years ago and
shows how profitable may be combining previously
unrelated disciplines, such as complexity and quantum
information.
Our result opens a way to test systems for their

quantumness. Suppose we have a system whose internal
functioning is unknown and that is submitted to sequential
measurements for which a classical simulation requires
more memory than the one allowed by the Bekenstein
bound. Here, the Bekenstein bound refers to the limit on the
entropy that can be contained in a physical system with
given size and energy [44]. We may assume that no system
can store and process information beyond the Bekenstein
bound and can test whether the system is not emitting heat
due to Landauer’s principle (which states that the erasure of
classical information implies some heat emission [45]). If
this heat is not found, then our result allows us to certify
that the system is in fact quantum and not a classical
simulation. Therefore, we can use its quantum features for
information processing.
On the other hand, our result could also inspire new

techniques in complexity science, where there is a growing
interest in the value of quantum theory for simulating
otherwise difficult to simulate classical processes (e.g.,
[46,47]). In this respect, our result could pinpoint the
properties of classical processes that make them particu-
larly amenable to improved modeling using quantum
systems and thus also further catalyze the use of quantum
methods in complexity science.
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