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One of the greatest challenges in biophysical models of translation is to identify coding sequence features
that affect the rate of translation and therefore the overall protein production in the cell.We propose an analytic
method to solve a translationmodel based on the inhomogeneous totally asymmetric simple exclusion process,
which allows us to unveil simple design principles of nucleotide sequences determining protein production
rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of
S. cerevisiae transcript sequences and predicts that the first 10 codons,which is the ribosome footprint length on
the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate
under physiological conditions. Finally,we interpret the obtained analytic results based on the evolutionary role
of the codons’ choice for regulating translation rates and ribosome densities.
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Translation is one of the major steps in protein biosyn-
thesis. During this process, the nucleotide sequence of a
messenger RNA (mRNA) is translated into a functional
protein. Each nucleotide triplet, called a codon, codes for a
specific amino acid, the protein’s building block. There is
experimental evidence that the rate at which a certain mRNA
is translated depends on its specific codon sequence [1–4],
especially in the case of eukaryotes. Identifying sequence
features that determine the protein production rate, also
commonly referred to as the translation rate or efficiency, is a
fundamental open question in molecular biology [1,3].
Translation is performed by molecular motors called

ribosomes, which move unidirectionally along the mRNA.
The amino acids are delivered to the ribosome by molecules
called transfer RNAs (tRNAs), which are specific to the
codon and the amino acid they deliver (Fig. 1). The
dwelling time of a ribosome on a specific codon depends
primarily on the abundance of the corresponding tRNA
[5,6]. Understanding how codon sequences determine
protein production rates can potentially unlock many
synthetic applications [7,8].
The standard biophysical model of translation is known

as the totally asymmetric simple exclusion process
(TASEP), which captures the concurrent motion of ribo-
somes on the mRNA [9,10]. In this model, ribosomes
progress along the mRNA codon by codon, provided that

the codon that a ribosome moves onto is not occupied by
another ribosome. The protein production rate can then be
identified as the ribosomal current of this driven lattice gas.
Because of the net current, TASEP is not in equilibrium,
and its steady state is only known for a few special cases
[11,12]. Unfortunately, most biologically relevant variants
of TASEP can only be studied numerically [13–15], and
efficient methods of exploring a large number of param-
eters are lacking. The steady state of the TASEP with
nonuniform hopping rates is a long outstanding problem in
nonequilibrium statistical physics [15,16]. An analytic
prediction of protein production rates is also needed in
order to interpret recently developed ribosome profiling
experiments that are capable of monitoring ribosome
positions along the mRNA [17]. Such analytical prediction
is missing in previous models of ribosome dynamics,
implicitly or explicitly based on the TASEP [18–22],
and it is key to decipher sequence determinants of protein
production rates.
In this Letter, we develop a versatile analytic method to

solve TASEP-based models of translation. Our analytic
approach, integrated with simulations and experimental
data, allows us to efficiently identify the main features of
the mRNA codon sequence that determine the rate of
protein production. The genome-wide comparison of our
analytic predictions with numerical simulations shows an
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excellent agreement for the model organism S. cerevisiae
(baker’s yeast).
Stochastic model of mRNA translation.—We focus on

the model for translation introduced in [21,23,24]. The
mRNA is represented by a one-dimensional lattice con-
sisting of L discrete sites (codons), where site 1 designates
the start codon. Ribosomes are represented by particles that
occupy l ¼ 10 lattice sites, which is the ribosome footprint
length measured in ribosome profiling experiments [17].
We identify the position 1 ≤ i ≤ L of a ribosome with the
position of its A site, which is located d ¼ 5 lattice
sites from the trailing end of the ribosome [Fig. 1(a)].
A ribosome that waits for a tRNA at position i is labeled by
1i, and a ribosome that has already received the correct
tRNA and is ready to move is labeled by 2i. The set of
labels of all translating ribosomes on the lattice is called a
configuration C of the system. For example, C ¼ 11213
denotes a lattice with 2 ribosomes, one at site 1 waiting for
a tRNA and another one at site 13 that has already received
the correct tRNA.
Ribosomes initiate translation at rate α by binding to the

mRNA so that their A site is at the start codon, provided the
sites 1;…;l − dþ 1 are empty [Fig. 1(a)]. A ribosome at
site i makes the transition 1i → 2i at rate ki, dependent on
tRNA abundances [Fig. 1(b)], and moves one site forward
at rate γ [Fig. 1(c)]. Because of steric interactions between
particles, the particle at site i can move only if there is no
ribosome at site iþ l. Termination occurs when the
particle at site L receives the last amino acid, releases

the final protein, and detaches from the mRNA, which we
integrate into a single step occurring at rate β [Fig. 1(d)].
Our main goal is to compute the rate of protein production

as a function of the parameters of the model, which are α, β,
γ, and ki for each of the L codons used. We assume that
translation takes place under steady-state conditions, so that
the ribosomal current is constant along the mRNA and is
equal to the rate of protein production, which in turn is equal
to rate at which ribosomes load onto the mRNA and initiate
translation. To this end, we define the codon occupation
number τi to be equal to 1 if the ith codon is occupied by an
A site, and 0 if otherwise. By definition, the exact steady-
state ribosomal current J then reads

J ¼ α
X
C

�Yl
i¼1

(1 − τiðCÞ)
�
PðCÞ; ð1Þ

where τiðCÞ denotes the ith codon occupation number for
configuration C, PðCÞ denotes the steady-state probability
that the lattice is in configurationC, and the summation goes
over all configurations C. Other quantities of interest that we
compute are the local and total particle densities ρi ¼ hτii
and ρ ¼ ð1=LÞPL

i¼1 ρi, respectively.
Series expansion method for computing PðCÞ.—In order

to find PðCÞ one has to solve the steady-state master
equation MP ¼ 0, where P is a column vector whose N
elements are the steady-state probabilities PðCÞ of being in
configuration C, and N denotes the total number of
configurations. The transition rate matrix MC;C0 is given
byWC0→C for C ≠ C0 and −eðCÞ for C ¼ C0, whereWC0→C
is the transition rate from C0 to C and eðCÞ ¼P

C00≠CWC→C00 is the total exit rate from C. The exact
solution of the master equation can be formally written as

PðCÞ ¼ detMðp;pÞPN
q¼1 detM

ðq;qÞ ; ð2Þ

where p is the position of configuration C in the column
vector P and detMðp;pÞ is a determinant of the matrix
obtained by removing pth row and pth column fromM (see
Supplemental Material [25] for details). Unfortunately,
calculating this determinant is feasible only for unrealis-
tically small system sizes.
To circumvent this problem, we exploit the fact that

detMðp;pÞ is a multivariate polynomial in the variables
α; k1;…; kL; β, and γ [26]. In the biological literature it is
often assumed that the initiation rate α is a major limiting
step of the translation process, mainly determined by the
presence of secondary structures [27,28]. For this reason,
we use α as an expansion parameter, and we assume that
α ≪ γ; β; k1;…; kL. By collecting terms with the same
power of α, we can rewrite PðCÞ as an univariate poly-
nomial fðCÞ in the variable α with unknown coefficients
fnðCÞ

(a) (b)

(c) (d)

FIG. 1. A sketch of the mRNA translation process involving
initiation (a), elongation consisting of tRNA delivery (b), and
translocation (c), followed by termination (d). We emphasize that
this is an oversimplified scheme of the process, and that actual
ribosomes cover l ¼ 10 codons. At each elongation step, the
ribosome receives an amino acid from a tRNA that matches the
codon occupied by the A site of the ribosome (the “reading” site).
After the amino acid is added to the growing polypeptide, the
ribosome translocates one codon forward, and the process is
repeated.
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PðCÞ ¼ fðCÞP
CfðCÞ

; fðCÞ ¼
XKðCÞ
n¼0

fnðCÞαn; ð3Þ

where the coefficients fnðCÞ depend on the transition rates
k1;…; kL; γ, and β (in order to ease the notation, we leave
out the explicit dependence on those parameters). Since we
expect that fðCÞ can be well approximated by the first few
terms, the value ofKðCÞ in Eq. (3) is irrelevant in our study.
In order to find the unknown coefficients fnðCÞ, we

insert Eq. (3) into the master equation MP ¼ 0, collect all
the terms with the same nth power of α, and equate their
sum to zero. For a given power n, the resulting equation is
similar to the original master equation in which PðCÞ is
replaced by fnðCÞ unless the coefficient multiplying PðCÞ
is α, in which case PðCÞ is replaced by fn−1ðCÞ. Starting
with n ¼ 0, we note the equations for the coefficients f0ðCÞ
have the same form as the original master equation, but
with α ¼ 0, leading to the trivial solution f0ðCÞ ¼ 0 if
C ≠ ∅. Since the terms fðCÞ are not normalized, we have
the freedom to choose any value for f0ð∅Þ, which we
set to 1.
For n ≥ 1, the equation for fnðCÞ reads

e0ðCÞfnðCÞþfn−1ðCÞ
X
C0

IC;C0

¼
X
C0

IC0;Cfn−1ðC0Þþ
X
C0

ð1−IC0;CÞWC0→CfnðC0Þ; ð4Þ

where IC;C0 ¼ 1 if WC→C0 ¼ α, and is 0 otherwise, and
e0ðCÞ ¼

P
C0 ð1 − IC;C0 ÞWC→C0 is the total exit rate from C

excluding the rate α.
A key observation in our analysis is that fnðCÞ ¼ 0

whenever the number of particles in C is larger than n. This
follows from the result f0ðCÞ ¼ 1ð0Þ if C ¼ ∅ (C ≠ ∅) in
conjunction with the hierarchical structure of Eq. (4), which
connects configurations differing in the number of particles
by no more than one (a proof for n ¼ 1 is presented in the
Supplemental Material [25]). This allows us to write Eq. (4)
taking into account configurations with only one particle
and discarding all the others, which yields

f1ð11Þ ¼
1

k1
f0ð∅Þ; f1ð1LÞ ¼

β

kL
f1ð2LÞ; ð5aÞ

f1ð1iÞ ¼
γ

ki
f1ð2i−1Þ; 2 ≤ i ≤ L; ð5bÞ

f1ð2iÞ ¼
ki
γ
f1ð1iÞ; 1 ≤ i ≤ L − 1: ð5cÞ

The solution to Eqs. (5) is given by

f1ð1iÞ ¼
1

ki
; f1ð2iÞ ¼

(
1
γ i ¼ 1;…; L − 1

1
β i ¼ L

: ð6Þ

The equations for f2ðCÞ involving configurations with
one and two particles are presented in the Supplemental
Material [25].
Once we determine the coefficients fnðCÞ up to a desired

order n, we can compute the steady-state average of any
observable OðCÞ by inserting PðCÞ from Eq. (3), and
expanding hOi around α ¼ 0,

hOðCÞi ¼
P

K
n¼0

P
COðCÞfnðCÞαnP

K
n¼0

P
C fnðCÞαn

¼
X∞
n¼0

cnαn: ð7Þ

For example, the first three coefficients c0, c1 and c2 are
given by

c0¼
a0
b0

; c1¼
a1−c0b1

b0
; c2¼

a2−c1b1−c0b2
b0

; ð8Þ

where an and bn are defined as

an ¼
X
C

OðCÞfnðCÞ; bn ¼
X
C

fnðCÞ: ð9Þ

Notice that the expansion in Eq. (7) is slightly different
for the current J due to an extra α in Eq. (1) and is given by
J ¼ P∞

n¼0 cnα
nþ1. Using the expressions for f0ðCÞ and

f1ðCÞ computed earlier yields

J ¼ α

�
1 −

Xl
i¼1

�
1

ki
þ 1

γi

�
αþOðα2Þ

�
; ð10Þ

ρ ¼ 1

L

XL
i¼1

�
1

ki
þ 1

γi

�
αþOðα2Þ; ð11Þ

ρi ¼
�
1

ki
þ 1

γi

�
αþOðα2Þ; ð12Þ

where γi ¼ γ þ ðβ − γÞδi;L. These equations constitute
our main result. Equation (10) shows that if the initiation
rate α is small compared to k1;…; kL, and γ, then the
protein production rate J depends predominately on the
initiation rate, along with the translocation and elongation
rates of the first 10 codons, corresponding to the ribosome
footprint l. The importance of the first 10 codons is a direct
consequence of the excluded volume interactions: any
ribosome already present in that region will prevent a
new ribosome from binding the mRNA. It is also important
to emphasize that (10)–(12) are exact series expansions
around α ¼ 0; the approximation is made only when the
series is truncated.
Independent Particle Approximation (IPA).—

Interestingly, the excluded volume interactions between
particles have no effect on the first two terms in the series
expansion of J. This motivates us to ask how the expansion
in Eq. (10) would look like if we assumed that all particles
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are independent, i.e., not experiencing any exclusion
interaction. In our model, the IPA amounts to replacing
PðCÞ with

PIPAðCÞ ¼ 1

ZL

YNðCÞ

j¼1

w1ðθXðjÞÞ; ð13Þ

where NðCÞ is the number of particles in a configuration C,
θ is one of the two particle states 1 and 2, XðiÞ is the
position of the ith particle on the lattice, and ZL is the
normalization constant. The weights w1ð1iÞ and w1ð2iÞ for
i ¼ 1;…; L are obtained by solving the master equation for
a single particle, and they are given by α=ki and α=γi,
respectively. The corresponding expressions for the current
J and local density ρi read

JIPA ¼ αQ
l
i¼1ð1þ piÞ

; ρIPAi ¼ pi

1þ pi
; ð14Þ

where pi ¼ αð1=ki þ 1=γiÞ. We will use these results later
in order to determine the importance of ribosome collisions
in real genetic sequences. We also note that the IPA in
Eq. (13) provides a good approximation to fnðCÞ for n ¼
NðCÞ when the particles in C are far apart from each other.
Application to mRNA translation in yeast.—We now

apply our results to the transcriptome of S. cerevisiae using
realistic model parameters. The values of α in the range
0.005–4.2 s−1, with the median value of 0.09 s−1, have
been previously estimated in Ref. [21] using genome-wide
experimental values of the ribosomal density. We assume
that the rates ki are mainly proportional to the gene copy
number of tRNAs delivering the corresponding amino acid
[29], the rates are normalized so that the average codon
translation rate is equal to the experimental value of 10
codons/s [30], and the estimates of all elongation rates,
along with the distribution of α, are presented in the
Supplemental Material [25]. The translocation rate γ is
fixed to γ ¼ 35 codons=s [31], and termination is assumed
to be fast and comparable to translocation [30], β ≈ γ, so
that γi ¼ γ∀ i in Eqs. (10)–(12).
In total, we analyzed 5836 gene sequences; for each gene

we calculated J, ρ, and ρi for 1 ≤ i ≤ L up to and including
the second order of the perturbative expansion at the
corresponding physiological value of α. The results were
then compared to the exact values obtained numerically
with stochastic simulations using the Gillespie algorithm
[32] by calculating the percent error ϵ.
For the protein production rate J, with the zeroth order

of the perturbative expansion (predicting that J ¼ α),
we obtain an error of ϵ < 5% for only 11% of the genes.
Remarkably, that percentage jumps to 80.7% when the
first-order coefficients in Eq. (6) are taken into account
(Fig. 2). Including the second-order coefficients [computed
numerically from Eq. (4)] does not significantly improve
results, due to a large value of α⪆0.15 s−1 in about 20% of

the genes. Since the coefficients in Eq. (7) typically
alternate in sign, truncating the series will ultimately lead
to a wrong result when the value of α is large enough. On
the other hand, the IPA does not suffer from this problem
and leads to an error ϵ < 5% in 94% of genes, whereby
only 1% of genes have ϵ > 20%. The success of the IPA
also suggests that ribosome collisions and traffic jams have
a minor effect on the rate of translation, which is in
accordance with recent experimental evidence [27,33].
This is also apparent from the density profile ρi, which
is very well approximated by the linear approximation in
Eq. (12), even for larger values of α [Figs. 2(b) and 2(c)].
Identifying determinants of mRNA translation.—Our

analytic prediction allows us to decompose the contribu-
tions from initiation and elongation to the rate of translation
J, thereby addressing a long-standing question about the
main determinants of protein production rate. Remarkably,
the expressions for the current J, obtained with both the
first-order and the independent particle approximation,
involve only the first l ¼ 10 codons. This result therefore
strongly indicates that, together with the initiation rate, the
first 10 codons of the mRNA are the key determinants of
the protein production rate by preventing a new ribosome

(a)

(b)

(c)

FIG. 2. (a): A histogram of the percent error ϵ measuring the
discrepancy between the protein production rate obtained by
stochastic simulations and the perturbative expansion including
the independent-particle approximation (IPA). (b) and (c): Ribo-
somal density profile obtained by stochastic simulations (black)
compared to Eq. (12) (red) for two values of the initiation rate α,
one close to the median value ≈0.09 s−1 (gene YAL045C, b) and
the other that is close to the 90th percentile value ≈0.23 s−1 (gene
YGL034C, c).
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from binding, which effectively decreases the initiation
rate.
If we assume that the cell maximizes the rate of protein

production, given the above result, we would expect to find
a signature in the genome for selecting efficient fast codons
at the beginning of each gene. We test this hypothesis by
computing the ribosomal current for the fastest (JF) and the
slowest (JS) set of first l synonymous codons for each
gene, using the IPA. A score ηJ ¼ ðJ − JSÞ=ðJF − JSÞ is
then assigned to each gene, which is 1 (0) when the
sequence corresponds to the fastest (slowest) codon
sequence. On the other hand, one might assume that the
cell not only tries to maximize protein production rates, but
at the same time, it tries to minimize the ribosome density ρ
on mRNAs. This assumption is motivated by the fact that
ribosomes are limiting [22,34] and highly costly in terms of
cellular energy resources [35], and therefore, ribosome
queues are to be avoided. Hence, we also compute ηρ ¼
ðρ − ρSÞ=ðρF − ρSÞ for each gene, where ρF and ρS denote
the ribosome density for the fastest and slowest set of
synonymous codons, respectively.
Figure 3 shows the histogram of ηJ (yellow) and ηρ

(blue) computed for 5836 genes of S. cerevisiae. Both
histograms show an average of 0.7, suggesting the selection
of fast codons near the start codon to maximize J, as well as
an overall selection of fast codons along the mRNA to
minimize ρ. However, the width of the distribution of ηρ is
substantially smaller than the one of ηJ. This might indicate
that the optimization of the protein production rate is
strongly dependent on the particular gene since different
proteins are needed at different concentrations. In contrast,
the minimization of the number of ribosomes on mRNAs
could be a more general constraint.
Conclusions.—We have presented an analytic method

that allows us to quantify sequence determinants of protein
production rates, using a model for translation that is based
on an inhomogeneous exclusion process. Our results
demonstrate that the rate of protein production is largely
determined by the initiation rate and the elongation rates of
the first 10 codons (the ribosome footprint length on the
mRNA), which control how fast ribosomes load onto the
mRNA, whereby ribosome collisions and queues have a
minor effect under physiological conditions.
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