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We consider a one-dimensional interacting spinless fermion model, which displays the well-known
Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between the
strength of the interactionU and the hopping J. We subject this system to a spatially uniform drive which is
ramped up over a finite time interval and becomes time periodic in the long-time limit. We show that by
using a density matrix renormalization group approach formulated for infinite system sizes, we can access
the large-time limit even when the drive induces finite heating. When both the initial and long-time states
are in the gapless (LL) phase, the final state has power-law correlations for all ramp speeds. However, when
the initial and final state are gapped (CDW phase), we find a pseudothermal state with an effective
temperature that depends on the ramp rate, both for the Magnus regime in which the drive frequency is very
large compared to other scales in the system and in the opposite limit where the drive frequency is less than
the gap. Remarkably, quantum defects (instantons) appear when the drive tunes the system through the
quantum critical point, in a realization of the Kibble-Zurek mechanism.
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The manipulation of materials properties by controlled
application of high amplitude electromagnetic fields, with
the ultimate goal of creating “quantum matter on
demand,” is attracting an increasing amount of attention
[1,2]. As technology for generating intense electromag-
netic pulses across a broad wavelength spectrum has
become available, there is an urgency to understand
how to use light to induce phenomena that are inaccessible
in thermal equilibrium and study its interaction with
complex phases of matter.
A system exposed to a time periodic drive may be

described by a “Floquet Hamiltonian” [3] with a discrete
time translation invariance. While Floquet systems have
been studied extensively in atomic physics [4–8], less
attention has been paid to solid-state realizations due to
the issue of runaway heating. If the drive period matches an
excitation energy in the solid, then an ever increasing
number of excitations may be generated, driving the system
to the infinite temperature limit. However, if the drive
frequency is sufficiently detuned from simple excitation
energies, for example, by being very high [9–11] or being
well within an excitation gap [12–14], runaway heating
only occurs at exponentially long times and there is a well-
defined intermediate timescale, typically referred to as the
prethermal regime, where heating is negligible. The high
frequency limit has the added simplification that a low
order Magnus expansion [15] can be employed to describe
the driven system in terms of an effectively static
Hamiltonian with renormalized parameters [16,17].

Most of the theoretical work on Floquet-like systems has
been limited to qualitative analysis, (effectively) noninter-
acting models or small systems in the long-time limit.
Important exceptions include the work of Poletti and
Kollath [18], where a one-dimensional Bose-Hubbard model
with a drive field ramped slowly up from zero was studied,
and that of Mentink, Balzer, and Eckstein [12] and
Mendoza-Arenas et al. [19], who performed dynamical
mean field analyses of the destruction of antiferromagnetism
upon application of time periodic fields, and its dependence
on ramp speed [20–22], and a general discussion of the
Floquet adiabatic theory for different drive parameters [23].
In this Letter we present a comprehensive study of an

interacting quantum many-body model driven by electro-
magnetic radiation which vanishes at large negative times,
is periodic at large positive times, and is ramped up at
controllable rates. We use a numerically exact density
matrix renormalization group (DMRG) method [24–26]
that is formulated in the thermodynamic (infinite system
size) limit [27–29]. We show that this method allows us to
access unprecedentedly long times in the prethermal regime
where heating may be neglected. We are interested in the
dependence of the properties of this prethermal state on the
ramp speed of drive and frequency. We find that the long-
time Floquet behavior can be qualitatively understood in
terms of equilibrium models with renormalized parameters
and a temperature which depends on ramp speed and other
factors [30]. Finally, we show that a key feature of the
Kibble-Zurek case [31–33], in which the drive tunes the
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system across a quantum phase transition, is the appearance
of quantal (instanton–anti-instanton) defects. Our results
demonstrate the power of time-dependent DMRG to study
Floquet engineering in interacting systems.
We consider spinless fermions with a nearest-neighbor

interaction described by the following Hamiltonian:

HðtÞ ¼
X
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The operators ci and c
†
i annihilate or create spinless fermions

at site i, and ni ¼ c†i ci is the site occupancy. We concentrate
on the case of half filling, with U > 0 and (without loss of
generality) J > 0. The equilibrium phase diagram is shown
in Fig 1. We choose JðtÞ ¼ JeiAðtÞ, with AðtÞ the vector
potential corresponding to a spatially uniform electric field
E ¼ −∂tA and consider a harmonic drive with frequency Ω
which is ramped on over a time interval τ:
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We consider two frequency regimes: Magnus, Ω ≫ J, U
(we choose Ω ¼ 10J), and subgap, Ω < Δ (we choose
U ¼ 16J and Ω ¼ 0.6U). Previous work on related models
[9–14] suggests that in these regimes a parametrically long
intermediate-time regime exists in which heating may be
neglected and a steady state may be defined. As such, the
long-time physics may be understood in terms of pseu-
doequilibrium arguments based on Hamiltonians renormal-
ized via an appropriate average over a drive period,
effectively moving the system from one point to another
in the phase diagram (Fig. 1). In this language we
distinguish the bare parameters (without the driving) from
the effective ones (with the driving), such as the bare gap Δ
and the effective gap Δeff (both can be obtained by Bethe
ansatz using the values of U and the bare hopping J or

effective hoping Jeff , respectively). In the Magnus case it is
argued [15] that in the steady state one may simply replace
JðtÞ by its average over a period 2π=Ω, J → Jeff ¼
J0ðE0=ΩÞJ. This leads to a decrease in the magnitude of
J, because the Bessel function has magnitude less than 1,
i.e., an increase in the ratio U=J, implying that the drive
moves the system to the right in Fig. 1 as indicated by
arrows in the cases (a1)–(a3), either within the Luttinger
liquid (LL) phase (a1), within the charge density wave
(CDW) phase (a2), or across the quantum critical point
separating the two (a3). In the subgap regime, the modi-
fication of the Hamiltonian parameters is more involved
than in the Magnus case. As noted in Refs. [12,13], if the
drive period is small relative to the gap, analytical results
may be obtained by retaining only processes that couple
adjacent Floquet bands and averaging over a drive period.
Applying this method to our model, we find that the long-
time behavior may be described by the effective hopping,

Jeff ¼ J
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which may be either smaller or larger than the starting J, so
the system may be moved either to the left or the right on
the phase diagram of Fig. 1, but of course only within the
gapped phase [Fig. 1, case (b)].
We characterize the out-of-equilibrium behavior via the

equal time density-density correlation function C, which
depends on relative position j, ramp time τ, and time t:

Cnnðj; t; τÞ ¼
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focusing in particular on the t and τ dependence of the large
j behavior. In the Luttinger liquid phase at equilibrium as
T → 0, C decays as a power law for large j, while in the
CDW phase, C tends exponentially to a nonzero constant.
At T > 0, C decays exponentially to zero at long scales,
with exponent depending on phase, value of interaction,
and temperature.
We use the DMRG methods of Refs. [27–29] to solve the

model [see Supplemental Material (SM) [34] for details]. We
start from the ground state corresponding to AðtÞ ¼ 0 and
integrate forward in time. DMRG calculations are limited by
the growth of entanglement entropy; in the Magnus and
subgap regimes the entanglement remains manageable
because there is no runaway heating, allowing us to reach
large times. In all cases except the Kibble-Zurek (a3)
situation, we find (see the SM [34]) that after times ∼100J
the system reaches a steady state, in which the properties
(averagedover a fewdrive periods) become time independent.
We describe the steady state properties by comparing to a
pseudothermal state given by a diagonal density matrix.
Figure 2 shows the long-time behavior of C, as a

function of inverse ramp time for different distances j.

FIG. 1. Ground state phase diagram of Eq. (1) as a function of
ratio of interaction strength U to hopping J showing Luttinger
liquid (LL) and charge density wave (CDW) phases. Notations
(a1)–(a3) and (b) indicate the studied cases, with the direction in
which the effective interaction strength can be tuned by a non-
equilibrium drive indicated by the arrow head. The circular marker
signals the location of the LL to CDW quantum phase transition.
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The upper panel shows that when the system is in the
Luttinger liquid phase both before and after the ramp [case
(a1)] the behavior is completely independent of the ramp
time, and that values of the correlation functions are very
close to those predicted by using the Magnus formalism to
obtain an effective J and then using equilibrium formulas to
calculate the T ¼ 0 behavior. As shown in the SM, the
exponent characterizing the power-law decay is, within our
numerical uncertainty, identical to the Magnus estimate
but the prefactor is slightly larger [34]. This T ¼ 0-like
Luttinger liquid behavior is also seen in the momentum
dependences displayed in the SM [34]. Thus, in this case
the energy injected by a nonadiabatic ramp does not
manifest itself as an effective temperature, even for ramp
time as low as τ ¼ J=10 (compare Supplemental Material,
Fig. S2 [34]). This finding is consistent with previous
reports that the integrability of the system means that
quenching of a LL from one time-independent Hamiltonian
to another preserves the basic power-law decay [35–38].
The middle and lower panels of Fig. 2 study two

examples of the case (a2) where the perturbation is
expected to shift the system from one point in the CDW
regime to another. We again find that after a transient period
≲100=J the system evolves to a steady state, but in contrast
to the LL to LL case, we find strong dependence on the
ramp time; note in particular the ramp-speed-dependent

exponential decays at large j. Comparison of the two cases
indicates that the timescale governing the ramp speed
dependence is the inverse of the gap Δeff of the final state
(obtained from the Bethe ansatz using Jeff and U).
Figure 3 considers the case (a2) in more detail, plotting

the j dependence of the logarithm of jCj for different ramp
speeds and initial correlation strengths. Comparison to the
equilibrium behavior suggests that the energy put into
the system by a rapid ramp produces an effective temper-
ature Teff . The inset shows the effective temperature (see
Supplemental Material [34]) defined from CðjÞ ¼
C0e−Δ

eff=Teff (C0 is the fitting constant). We see that for
sufficiently adiabatic ramps, the effective temperature
becomes unobservably small, but we believe that for all
ramp speeds Teff ≠ 0. Thus we argue that a nonadiabatic
ramp creates a density of defects (as would also be created
by a nonzero temperature) which are essentially randomly
distributed and do not annihilate over the timescale of our
simulations. We finally note that although the long-distance
behavior is consistent with a nonzero temperature, the
entire j dependence cannot be described with a unique
temperature-gap pair. As can be seen from the offset
between the open circles and the solid line, the long-
distance decay is characterized by a prefactor different from
the thermal equilibrium result. Relatedly, the open circles
agree very well with the short-time behavior (see SM for
more information [34]).
Very similar physics is obtained in the subgap regime

[regime (b)]. We find the same dependence on ramp speed

FIG. 2. Density-density correlation function CðjÞ averaged over
the time range t ¼ 100=J to t ¼ 400=J for different j (solid lines)
as function of inverse of ramp time τ for Ω=J ¼ 10, E0=Ω ¼ 1,
and T=J ¼ 0 (Magnus limit). Top: Initial correlation strength
U=J ¼ 0.5 (LL phase), Magnus estimate of final correlation
strength U=Jeff ≈ 0.65. Middle: Initial state U=J ¼ 1.75
(CDW), final U=Jeff ≈ 2.29 (CDW). Bottom: Initial state U=J ¼
4 (CDW), final U=Jeff ≈ 5.23 (CDW). The ground state expect-
ation values from the effective Hamiltonian (J → Jeff ) are given as
horizontal dashed lines and the gaps Δeff as vertical dashed lines.

FIG. 3. Main: Time-averaged density-density correlation
function CðjÞ (solid lines) for different Jτ and U=J. The other
parameters are Ω=J ¼ 10, F0=Ω ¼ 1, and T=J ¼ 0. The T ¼ 0
equilibrium prediction with J → Jeff ¼ J0ðE0=ΩÞJ (dark
dashed lines) compares well to the time-averaged results only
in the limit of large Jτ. The light dashed lines are the undriven
equilibrium results. Inset: Effective temperature (crosses) as
function of τ extracted by fitting the slope of the exponential tail
of the U=J ¼ 1.7 and U=J ¼ 4 lines in the main panel. One of
these fits (U=J ¼ 1.7 and Jτ ¼ 0.5) of the slope of the
exponential tail in j is shown in the main panel by open circles.
The approximate prediction Teff=Δeff ¼ aΔτ sinh ðbτΔÞ is the
dashed line (see SM [34]).
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as in case (a2). Thus, in Fig. 4 we present only results in the
quasiadiabatic limit. For the case considered, the long-time
CDW amplitude is smaller than the initial amplitude (drive
leads to weaker correlations), but with a nonmonotonic
dependence on the ratio of drive strength to frequency. The
inset confirms that the Jeff obtained by analyzing the data in
the main panel agrees perfectly with our theoretical
prediction Eq. (3). Remarkably, Eq. (3) describes a highly
tunable nonmonotonic control of the ration U=J either to
larger or smaller values, which is beyond the control
obtained in the Magnus regime (see SM [34]).
We finally show in Fig 5 the case (a3) in which the drive

tunes the system across the quantum critical point sepa-
rating the LL and CDW phases. The Jt ¼ 20 [lowest
(black)] curve is very similar to the short-time behavior
observed in the CDW to CDW quench [cases (a2) and (b)],
where C decreases with increasing j. This is qualitatively
consistent with a CDW-like phase with amplitude expo-
nentially decaying at large distances. But at slightly longer
times (Jt ∼ 25) a phase-slip–antiphase-slip pair appears:
as j is increased, the amplitude goes to zero, and then
increases again, but with the opposite phase (maxima in the
positions where an extrapolation of the small j curve would
predict minima), then the amplitude again goes to zero, and
then the oscillations are in phase with the small j ones. The
phase slip and antiphase slip separate rapidly in space, then
remain at a roughly fixed distance for a time interval
∼100=J and then recoalesce, leaving a single phase regime
(see inset). Such phase-slip–antiphase-slip pairs were not
observed in any of our CDW → CDW cases (see SM [34]).
Thus, we interpret the phase-antiphase slip pairs as quan-
tum defects produced in the manner of Kibble and Zurek
[31] because the trajectory in parameter space passes close
to the quantum critical point.
The first distance at which the phase-slip–antiphase-slip

pair appears is somewhat dependent on ramp speed and

drive strength, as is the time over which the phase slip and
antiphase slip exist, but in all cases we have investigated
the first time at which the pair appears is about the same
(Jt ∼ 30). The relatively weak dependence of many of the
phase-slip properties on parameters (see SM [34]) may be
related to the logarithmic scaling associated with the
Kosterlitz-Thouless-like criticality of the model at U ¼ J.
Note that unlike the defects which give rise to the expo-
nential decay, these instantons anneal out in a finite time.
In summary, this Letter has established DMRG as an

efficient tool to study Floquet engineering in interacting
quantum systems in situations where heating can be
neglected over a wide time range. In this wide time range,
it is generally accepted [9–14] that the system is in a
“prethermal” state described by a diagonal density matrix.
We investigated three different Floquet engineering cases
(LL → LL, CDW → CDW, and LL → CDW), finding
three different types of prethermal states. In the LL →
LL case the energy put into the system as the drive is turned
on does not manifest itself as an effective temperature.
On the other hand, in the CDW → CDW case the energy
does lead to a behavior closely analogous to that found in
thermal equilibrium, while the key feature of the LL →
CDW case is an interesting generation of finite lifetime
quantal defects if the drive moves the system across a
quantum phase transition. We also derived and numerically
verified an expression for drive-induced parameter changes
that goes beyond the standard Magnus expression and
admits a weakening as well as a strengthening of the
effective correlation parameter. Our work opens many
directions for research.

FIG. 4. Main: Time-averaged density-density correlation func-
tion CðjÞ (lines) for different E0=Ω. The other parameters are
Jτ ¼ 4,Ω=U ¼ 0.6,U=J ¼ 16, and T=J ¼ 0. Inset: Comparison
of Eq. (3) for effective hopping generated by subgap drive (solid
line) and deduced from fits of the data shown in the main panel to
the equilibrium T − 0 formula for the long-distance limit of C.

FIG. 5. Main: The correlation function CðjÞ at different times
averaged over one drive period for the Kibble-Zurek (a3) case.
Lines are shifted vertically for clarity of depiction; the midpoint
of the oscillation is zero. The dashed black line gives the
asymptotic value expected at large j from a ground state
calculation using the Magnus formalism, shifted to correspond
to the longest time case. Inset: Time evolution of the phase
averaged over the drive period. Light and dark gray denote the
phase of Cþ 1 and −1 with respect to the small j oscillation,
respectively. The parameters are U=J ¼ 0.95, E0=Ω ¼ 1.5,
Jτ ¼ 4, and T=J ¼ 0.
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The methods presented here can be applied to many other
one-dimensional situations including ladders, higher-spin
and longer-ranged interaction spin chains, and doped sys-
tems. This work sets the basis for the study of interacting
spinful fermions of relevance to quasi-1D conductingmateri-
als such as Li0.9Mo6O17 (purple bronze) [39], the organic salt
TTF-TCNQ [40], or NbSe3 [41]. NbSe3 in particular may be
particularly amenable to Floquet engineering because its
CDW gap scale is in the midinfrared [41], a region readily
accessible by modern high pulse-energy lasers.
Other future directions include a study of the effect of

pulses of finite duration. On the analytic side, an improved
understanding of the LL → CDW quench is urgently
needed.
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