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We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron
fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly,
a microscopic clarification of the related achievements based on Nozieres’ phenomenological description:
Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)]. In our formulation, the Fermi-
liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each
other through the total vertex er;(ga(w, @'; @', w), which may be regarded as a generalized Landau
quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies @
and @' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of
three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the
formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves

in a magnetic field.
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Introduction.—Universal low-energy behavior of inter-
acting Fermi systems has been one of the most fascinating
properties in condensed matter physics. Landau’s Fermi
liquid theory [1-3] phenomenologically explains transport
properties of electrons in a wide class of metals and normal
liquid *He successfully [4], and may also be applied to
exotic systems such as neutron stars and ultracold Fermi
gases [5]. It starts with an expansion of the energy E with
respect to the deviation of the momentum distribution
function dn,, from the ground state,

1
E=E,+ g €pOp, +5 g FoopeONpedny . (1)
po he,
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The single quasiparticle energy ¢, and the interaction
between quasiparticles f,,,, can microscopically be
related to the four-point vertex function, defined explicitly
in the many-body quantum theory [2,3]. The field theoretic
description has advantages over the phenomenological
approach: the transport equations can be derived directly
using the Green’s function without relying on empirical
assumptions nor the collision integral with the Boltzmann
equation [6,7]. For instance, through a microscopic con-
sideration about the antisymmetry properties of the vertex
function [3], sufficient conditions for the collective zero
sound mode to exist have been derived [8].

Nozieres extended the phenomenological Fermi-liquid
description to Kondo systems [9], expanding the scattering
phase shift 6 with respect to a deviation of the occupation
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number of the impurity level in a way analogous to Eq. (1).
Fully microscopic description was constructed by Yamada
and Yosida, Shiba, and Yoshimori [10-13], and has also
been extended to out-of-equilibrium quantum dots driven
by a bias voltage V [14,15]. The two different types of
descriptions complement each other and explain the uni-
versal behavior at temperatures 7 much lower than the
Kondo energy scale T'g. It is successful especially in the
particle-hole symmetric case, i.e., at half filling, where
the phase shift is locked at § = /2 and the quadratic »?,
T2, and (eV)? corrections emerge only through the quasi-
particle damping.

Away from half filling, however, the Kondo resonance
peak deviates from the Fermi energy w =0, and as a
consequence, the quadratic corrections emerge also through
the real part of the self-energy due to the Coulomb
interaction U [13,16]. It makes the problem difficult,
and such corrections have not been fully understood
for a long time. Recently, there has been a significant
breakthrough which shed light on this problem by extend-
ing Nozieres’ phenomenological description [17,18].
Specifically, Filippone, Moca, von Delft, and Mora
(FMvDM) determined especially the quadratic coefficients
of the self-energy away from half filling [19].

In this Letter, we provide a microscopic Fermi-liquid
description for the nonequilibrium Anderson impurity [20]
away from half filling. One of the most pronounced merits
of this formulation is that the real and imaginary parts of the
transport coefficients are derived together from an explicit
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expression for the total vertex I',y.,, (@, @'; @', @) at low
frequencies. It gives a clear answer to the long-standing
problem. Specifically, an asymptotically exact expression is
obtained, up to linear order in @w and «’, using the
antisymmetry and analytic properties with the Ward iden-
tities. The low-energy Fermi-liquid behavior is character-
ized by the expansion coefficients which are shown to be

expressed in terms of the linear y, and nonlinear ;(E]]gm
susceptibilities.

These susceptibilities can be calculated using methods
such as the numerical normalization group (NRG) [21] and
the Bethe ansatz solution [22,23]. We apply the microscopic
formulation to nonequilibrium current / through a quantum
dotin the Kondo regime, and calculate the coefficients using
the NRG. The result shows that the zero-bias peak of dI/dV
splits at a magnetic field of the order of Tk, and resolves a
controversial issue about the splitting [18]. There are other
numerical methods which work efficiently at different
energy scales, such as the quantum Monte Carlo method
[24], time-dependent NRG [25], and density-matrix renorm-
alization group [26]. Our approach has a numerical advan-
tage at low energies as both the linear and nonlinear
susceptibilities can be deduced from the flow of energy
eigenvalues near the fixed point of the NRG [27].

The microscopic theory gives exact relations between
different response functions and has given theoretical
support for the universal scaling observed in the nonequili-
brium currents through quantum dots in the Kondo regime
[28,29]. Furthermore, recent ultrasensitive current noise
measurements have successfully determined the Fermi-
liquid parameters [30], i.e., the Wilson ratio Ry and the
renormalization factor of quasiparticles. However, such
comparisons so far have relied on the theoretical predictions
at half filling. The exact formula of transport coefficients,
presented in Egs. (22) and (23), overcomes this restriction
and can be applied to quantum dots for arbitrary electron
fillings. Our formulation also has potential application for a
wide class of Kondo systems such as dilute magnetic alloys
and quantum impurities with various kinds of internal
degrees of freedom.

Nonlinear three-body susceptibilities for impurity
levels.—We consider the single Anderson impurity coupled
to two noninteracting leads (1 = L, R);

D
H = Zedgndg + Ungngy + Z Z /D de ecz/bcsw
~ _

A=L,R o©

+ Z Z vl(wz,(;da + dj;lllﬁ,a)' (2)
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Here, d creates an impurity electron with spin ¢ and
gy = dj;dg. Conduction electrons in each lead are norma-
lized such that {c,, CZ/ 2o} = 030105,0(€ —€'). In a mag-
netic field &, the impurity level is given by ¢,, = ¢; — oh,
where 6 = +1 (=1) for 1 (}) spin. The hybridization v,

between v, = [5,de\/p.c.;, and impurity electrons
broadens the impurity level: A=T1; +1; with I’} =
P, v% and p. = 1/(2D). We consider the parameter region,
where the half bandwidth D is much greater than the other
energy scales, D > max(U, A, |e,], |®|, T, eV).

We use the T =0 causal impurity Green’s function
G,(w) and self-energy X () defined at eV = 0:

’

1

G,(w) = w — €45 + iAsgn(w) — X (0)

(3)

The phase shift cot§, = [e,, + Z,(0)]/A, or the density of
states py, = —ImG,(0") /7 at @ =0, is a primary para-
meter which characterizes the Fermi-liquid ground state.
The Friedel sum rule relates 6, to the occupation number
which can also be given by the first derivative of the free
energy Q = —T log [Tre /7],

39 T—0 50
ﬂ —

(4)

<nd¢7> = aedg T .

The leading Fermi-liquid corrections are determined by the
static susceptibilities [10],

’rQ
86(10’ 8€d0 B

a<nd6> T__)epda)?mr" (5)

ZGG’ - 8€do./

It can also be expressed as y,, = fél/ D dr(6ngy (7)0ng4s),
and  J,y =0,y +0Z;(0)/0eyy is an enhancement
factor similar to the Stoner factor. The usual spin
and charge susceptibilities, y,=—1[(0Q)/(0h*)] and
=—[(0’Q)/(de3)], are given by linear combinations
of y,» [31]. These susceptibilities also determine the
characteristic energy scale 47" =1/, /yjx;, and the
Wilson ratio Ry = 1-4T"y;, which corresponds to a
dimensionless quasiparticles interaction [21,32].

Away from half filling, the third derivatives of the free
energy also contribute to the next leading Fermi-liquid
corrections, as we will show later

B3] Q.

Xojoy05 =

oo,
36,161 86,162 86,163 8€d61

(6)

It can also be expressed as a static three-point function of
the impurity occupation én,, = ng, — (ny,),
3 "o 7
Xoy0y03 —_A dT3/0 d72<T15”da3 (73)5ndaz(fz)5"dm>-
(7)

Higher-order Fermi-liquid corrections at T = 0.—The
Ward identity, which reflects the current conservation for
each spin component o, plays a central role [13],
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FIG. 1. Total vertex Ty .00, (01, @ @3, @4) satisfies the
antisymmetry property: Eq. (9) with | + @3 = @, + @y.
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Here, the total vertex I'; ;. .,.5, (@01, @2; @3, @4) includes all
contributions of multiple scattering, and Fig. 1 shows the
assignment of arguments. The antisymmetry properties
of the total vertex also impose strong restrictions on the
low-energy behavior as a consequence of the exclusion
principle [2,3,8,33],

F6|02;63(74 (0)1 , W @3, 0)4)
= _F6362;6164 (a)3» Wy, Wy, 0)4)
= F5354§0102 (0)3, W45 W1, 0)2)

= _FU]U4;6362 (a)l,a)4;a)3,a)2). (9)

For instance, at zero frequencies the parallel-spin compo-
nent vanishes I',,.,,(0,0;0,0) = 0, and the leading Fermi-
liquid relations [34] follow from Eq. (8).

Another important clue is the analytic property. The
nonanalytic part of the vertex function is accompanied by
the “sgn” functions and is purely imaginary, while the
analytic part is real. Thus, the low-frequency expansion of
the real part of I, (@, ®,; @3, w,) starts with a homo-
geneous polynomial of degree one. However, such a homo-
geneous polynomial of linear form cannot satisfy the
antisymmetry property Eq. (9) provided o; + w3 =
w, + wy. Therefore, the parallel-spin component does not
have an analytic part of linear order. Thus, for v, = @w; = 0,

0
7Rer(m’;o’0(w’ 0;0’ a))pdﬁ =0. (10)
w

w—0

To our knowledge, this property has not explicitly been
recognized so far. We have also calculated the skeleton
diagrams for I'y,.,,(@,0;0,) up to order U* and have
confirmed Eq. (10) perturbatively [35]. In the linear order, the
nonanalytic part shows the |w| dependence [12] with a
coefficient determined by Yamada and Yosida [11]:

Coios(@, 050, 0)p7, = imy; @ sgn(w) + O(@?).  (11)

A series of higher-order Fermi-liquid relations follow from
this property of the total vertex for parallel spins.

We obtain an identity between the double derivatives of
the real part of the self-energy using Eqgs. (8) and (10),

8°%,(0)
= i . 12
w—0 86%6 ( )

0%, (@)
Re E
Note that §°%,(0)/0€%, = 074,/0€4, by definition, and
Eq. (12) agrees with FMvDM’s result given in Eq. (B8b) of
Ref. [18]. Furthermore, using Eqgs. (8) and (12), the total
vertex for antiparallel spins can be calculated exactly up to
terms of order w?,

1—‘6’_0;_5’0 (Cl), 0,0, w)pdapd.—a

o a)?a,—a
==X1, TPds De, )
- 2
Pdo 0 a)(aa . ZTl b}
_ A1 13
+ 5 a€d,—g< aedo—l—mpdasgn((u) W + (13)

Note that the w-linear contribution is real and analytic.

We see in Egs. (12) and (13) that expansion coefficients
depend on 9y, /€, Which includes contributions from
three-body fluctuations )([03;’5”' The three-body correlations
vanish in the particle-hole symmetric case since the spin
(charge) susceptibility takes a maximum (minimum):
Oy,/0e; =0 and Jy./0e; =0 at ¢, = —U/2 and h = 0.
We also find that the @? term of Eq. (13) involves four-body
fluctuations in the real part through 8?7,/ 9€ 4,0¢, _, which
remains finite even in the particle-hole symmetric case. The
four-body fluctuations will also contribute to higher-order
terms of the parallel-spin vertex.

We have also calculated the total vertex for two inde-
pendent frequencies up to linear order in @ and w':

Cppoe (@, 00, 0)p? = iﬂ)(%“w —a |+, (14)
F"‘_"§_"v5 ((1), o', w)pdzrpd—g
Yo oy _
= — + Ga) + _ 0,0 /
X1l T Pdo 9 Y Pd Uaed_a
+iﬂ){%¢(|w—a)’|—|a)+a)’|)+..._ (15)

The analytic real part can be deduced from Eqs. (11) and (13)
using the antisymmetry properties, Eq. (9). The nonanalytic
part has been obtained through an additional consideration
about the singular Green’s-function products [7,13,15].
Specifically, the | — @'| and |w + @'| contributions emerge
from the intermediate particle-hole and particle-particle pair
excitations, respectively. We note that the total vertex,
Egs. (14) and (15), can be regarded as a quantum-impurity
analogue of Landau’s phemomenological interaction
Spopo» and can also be compared with Nozieres’ function
Oow (€,€") [1,9]. One of the advantages of the microscopic
formulation to the phenomenological descriptions is that the
real and imaginary parts, which contribute to the energy-
shift and damping of quasiparticles, are described in a
unified way with clearly defined correlation functions.
The T? and (eV)? self-energy corrections.—The T?
correction of the retarded self-energy X.(w,T) can be
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deduced from the derivative of I',y.p, (@, 0'; @', @) with
respect to @’ using the formula [2,11,35]

T 2
,0.) - 25(0.0) = TE- im w) +--- (16
lP = 1 _ F /' / / . 17
o_ wl% a)z ggggww,w,w)pd()-(w) ( )

Substituting Eqs. (14) and (15) into Eq. (17) [36], we
obtain

1 O
=— — i3z —s n 18
®=0 Pdo aed.—ﬁ Pdo s ( ) ( )

Here, the real part, dy; /Je, _,, emerges from the analytic
part of the total vertex for antiparallel spins.

In a previous work, we have diagrammatically shown that
the low-bias (eV)? self-energy can be calculated taking
a variational derivative of the equilibrium self-energy
with respect to the internal Green’s functions [15,37].
Revisiting the details of the calculation, we find exactly

consequently lead to Eq. (18), determine both the (eV)?
and T2 corrections [38]. The relation between these two
corrections had been first pointed out by FMvDM using
Nozieres’ description [18]. Our result provides a complete
proof for this observation.

Using the above results, low-energy behavior of the
retarded self-energy X (w,T,eV) is exactly determined
up to terms of order w?, T2, and (eV)?. To be specific,
the bias voltage eV = pu; —pur is applied through the
chemical potentials of the left and right leads, y; = a;eV
and up = —ageV, with additional parameters satisfying
a; + ap = 1. Thus, the self-energy generally depends not
only on eV but also a = (a;I'; —agl'g)/ (I + k) [15].
The asymptotically exact imaginary and real parts of the
retarded self-energy are given by

ImX (@, T,eV)

30Tk

B T e e

(eV)2+(7rT)2] 4

the same quantum-mechanical intermediate states, which (19)
|
ReX}(w,T,eV) = Acotf oo 2 V)? T)?
€do + Re O‘(w e ) COL O, + ( )(o‘o‘)w +5 2 a Es w 6,0d0- 86(1,_0- (FL I FR)Z (e ) + (ﬂ )
O s.— 107
—Yo_caeV aeVo + =222 a*(eV . 20
/YG. O‘ae + 8€d5 + 26 d s (e ) + ( )

We note that Eq. (20) is consistent with the previous result
of ours [15], derived for general electron fillings without
the knowledge of Eq. (12) [39]. Equation (20) is a
generalized formula of the real part, which also extends
FMvDM'’s result [18] to asymmetric junctions a # 0 [35].

Nonequilibrium magnetotransport.—We next consider
the current flowing through the Anderson impurity / [40],
using the Meir-Wingreen formula [41] with Egs. (19) and
(20). Specifically, we examine a symmetric junction with
I, =T, and yu; = —up = eV /2, for which the conduct-
ance can be expressed in the form

dl e’ .
= e SIS, = crf(aT) — ey (eV)). (1)

”2
CTo :? |:_ 005256 ()(ga +2)(%i) +

(22)
”2
Cye = Z |:_ cos 256()(12;6 + SX%i)
sin 250' a}(zm a)(Tl a)(Tl
o2 23
T <8€d+8€+ oh (23)

sin26,, 8)(6,,+68;(T ! ’
27\ Ogy oh

|

Here, contributions of the three-body fluctuations enter
through the derivatives of susceptibilities with respect
to €, or h, which are accompanied by the factor sin25,,.
For the magnetoconductance in the Kondo regime,
there is a controversial issue [18]: whether or not the
zero-bias peak of dI/dV splits at a magnetic field of
the order of the Kondo energy scale Tgx. We demon-
strate in the following that calculations with the exact
conductance formula, Egs. (22) and (23), resolve the
problem [35].

We have calculated the phase shift §, and the enhance-
ment factor },, as functions of & at ¢; = —U/2 using the
NRG [42,43]. The dimensionless coefficients Cj =
T%> ,crs/2 and Cy =T%> ,cy,/2 have been deter-
mined substituting the NRG results into Eqs. (22) and
(23). The result is shown in Fig. 2 as a function of 7/TY,
using T = 1/4y,, defined at & = O for each case of U/zA
(= 3.0, 3.5, 4.0) [44]. We see that both C7 and C\, show the
universal Kondo behavior. This is consistent with the
behavior of the Wilson ratio which is almost saturated to
the strong-coupling value Ry ~2 for U/zA =3 [42].
Furthermore, C; and Cy change sign at i of order Tg:
at very close magnetic-field values / ~ 0.38T . This means
that the zero-bias peak does split for & = 0.387x because
dI/dV increases from the zero-bias value as eV increases.
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FIG. 2. Magnetic field dependence of the coefficients Cr =
T3> ,cr4/2 and Cy =T%Y ,cy,/2 at ¢,=-U/2. Ty =
zomA/4 is defined at h =0 with the renormalization factor
70~ 0.08, 0.05, and 0.03 for U/zA = 3.0, 3.5, and 4.0, respec-
tively. At h =0, the coefficients approach C; — z%/16 and
Cy — 377/32 in the U — oo limit.

These observations are consistent with the previous second-
order renormalized perturbation result [45].

Conclusion.—We have provided a many-body quantum
theoretical description of the Fermi-liquid state in the
particle-hole asymmetric case. The Fermi-liquid corrections
away from half filling are characterized by additional con-
tributions of the three-body fluctuations which enter through
the nonlinear response function ;(E]]gm. The asymptotically
exact expression of the total vertex I',y.,,(w, 0'; 0, ®)
describes low-energy properties in a unified way: this function
and its derivatives with respect to @ or @’ determine the
quasiparticle interaction, energy shift, damping, and transport
coefficients can be generated systematically up to order w?,
72, and (eV)?, with the Ward identities given in Egs. (8) and
(17). Furthermore, the nonequilibrium self-energy Eq. (20) is
applicable to the asymmetric tunneling couplings, and has
potential application for real quantum dots [28-30]. We have
also demonstrated an application to the nonlinear magneto-
conductance through a quantum dot in the Kondo regime, and
have shown that the zero-bias peak of dI/dV splits naturally at
a magnetic finite field of order Tx. Our description can be
extended, and may be used, to explore a wide class of Kondo
systems and more general quantum impurities.
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