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We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron
fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly,
a microscopic clarification of the related achievements based on Nozières’ phenomenological description:
Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)]. In our formulation, the Fermi-
liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each
other through the total vertex Γσσ0;σ0σðω;ω0;ω0;ωÞ, which may be regarded as a generalized Landau
quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω
and ω0 using the antisymmetry and analytic properties. The coefficients acquire additional contributions of
three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the
formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves
in a magnetic field.
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Introduction.—Universal low-energy behavior of inter-
acting Fermi systems has been one of the most fascinating
properties in condensed matter physics. Landau’s Fermi
liquid theory [1–3] phenomenologically explains transport
properties of electrons in a wide class of metals and normal
liquid 3He successfully [4], and may also be applied to
exotic systems such as neutron stars and ultracold Fermi
gases [5]. It starts with an expansion of the energy E with
respect to the deviation of the momentum distribution
function δnpσ from the ground state,

E ¼ E0 þ
X
pσ

εpδnpσ þ
1

2

X
pσ
p0σ0

fpσ;p0σ0δnpσδnp0σ0 : ð1Þ

The single quasiparticle energy εp and the interaction
between quasiparticles fpσ;p0σ0 can microscopically be
related to the four-point vertex function, defined explicitly
in the many-body quantum theory [2,3]. The field theoretic
description has advantages over the phenomenological
approach: the transport equations can be derived directly
using the Green’s function without relying on empirical
assumptions nor the collision integral with the Boltzmann
equation [6,7]. For instance, through a microscopic con-
sideration about the antisymmetry properties of the vertex
function [3], sufficient conditions for the collective zero
sound mode to exist have been derived [8].
Nozières extended the phenomenological Fermi-liquid

description to Kondo systems [9], expanding the scattering
phase shift δ with respect to a deviation of the occupation

number of the impurity level in a way analogous to Eq. (1).
Fully microscopic description was constructed by Yamada
and Yosida, Shiba, and Yoshimori [10–13], and has also
been extended to out-of-equilibrium quantum dots driven
by a bias voltage V [14,15]. The two different types of
descriptions complement each other and explain the uni-
versal behavior at temperatures T much lower than the
Kondo energy scale TK . It is successful especially in the
particle-hole symmetric case, i.e., at half filling, where
the phase shift is locked at δ ¼ π=2 and the quadratic ω2,
T2, and ðeVÞ2 corrections emerge only through the quasi-
particle damping.
Away from half filling, however, the Kondo resonance

peak deviates from the Fermi energy ω ¼ 0, and as a
consequence, the quadratic corrections emerge also through
the real part of the self-energy due to the Coulomb
interaction U [13,16]. It makes the problem difficult,
and such corrections have not been fully understood
for a long time. Recently, there has been a significant
breakthrough which shed light on this problem by extend-
ing Nozières’ phenomenological description [17,18].
Specifically, Filippone, Moca, von Delft, and Mora
(FMvDM) determined especially the quadratic coefficients
of the self-energy away from half filling [19].
In this Letter, we provide a microscopic Fermi-liquid

description for the nonequilibrium Anderson impurity [20]
away from half filling. One of the most pronounced merits
of this formulation is that the real and imaginary parts of the
transport coefficients are derived together from an explicit
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expression for the total vertex Γσσ0;σ0σðω;ω0;ω0;ωÞ at low
frequencies. It gives a clear answer to the long-standing
problem. Specifically, an asymptotically exact expression is
obtained, up to linear order in ω and ω0, using the
antisymmetry and analytic properties with the Ward iden-
tities. The low-energy Fermi-liquid behavior is character-
ized by the expansion coefficients which are shown to be

expressed in terms of the linear χσσ0 and nonlinear χ½3�σ1σ2σ3
susceptibilities.
These susceptibilities can be calculated using methods

such as the numerical normalization group (NRG) [21] and
the Bethe ansatz solution [22,23].We apply the microscopic
formulation to nonequilibrium current I through a quantum
dot in the Kondo regime, and calculate the coefficients using
the NRG. The result shows that the zero-bias peak of dI=dV
splits at a magnetic field of the order of TK , and resolves a
controversial issue about the splitting [18]. There are other
numerical methods which work efficiently at different
energy scales, such as the quantum Monte Carlo method
[24], time-dependentNRG [25], and density-matrix renorm-
alization group [26]. Our approach has a numerical advan-
tage at low energies as both the linear and nonlinear
susceptibilities can be deduced from the flow of energy
eigenvalues near the fixed point of the NRG [27].
The microscopic theory gives exact relations between

different response functions and has given theoretical
support for the universal scaling observed in the nonequili-
brium currents through quantum dots in the Kondo regime
[28,29]. Furthermore, recent ultrasensitive current noise
measurements have successfully determined the Fermi-
liquid parameters [30], i.e., the Wilson ratio RW and the
renormalization factor of quasiparticles. However, such
comparisons so far have relied on the theoretical predictions
at half filling. The exact formula of transport coefficients,
presented in Eqs. (22) and (23), overcomes this restriction
and can be applied to quantum dots for arbitrary electron
fillings. Our formulation also has potential application for a
wide class of Kondo systems such as dilute magnetic alloys
and quantum impurities with various kinds of internal
degrees of freedom.
Nonlinear three-body susceptibilities for impurity

levels.—We consider the single Anderson impurity coupled
to two noninteracting leads (λ ¼ L, R);

H ¼
X
σ

ϵdσndσ þ Und↑nd↓ þ
X
λ¼L;R

X
σ

Z
D

−D
dϵ ϵc†ϵλσcϵλσ

þ
X
λ¼L;R

X
σ

vλðψ†
λ;σdσ þ d†σψλ;σÞ: ð2Þ

Here, d†σ creates an impurity electron with spin σ and
ndσ ¼ d†σdσ. Conduction electrons in each lead are norma-
lized such that fcϵλσ; c†ϵ0λ0σ0g ¼ δλλ0δσσ0δðϵ − ϵ0Þ. In a mag-
netic field h, the impurity level is given by ϵdσ ¼ ϵd − σh,
where σ ¼ þ1 (−1) for ↑ (↓) spin. The hybridization vλ

between ψλσ ≡
R
D
−D dϵ

ffiffiffiffiffi
ρc

p
cϵλσ and impurity electrons

broadens the impurity level: Δ≡ ΓL þ ΓR with Γλ ¼
πρcv2λ and ρc ¼ 1=ð2DÞ. We consider the parameter region,
where the half bandwidth D is much greater than the other
energy scales, D ≫ maxðU;Δ; jϵdσj; jωj; T; eVÞ.
We use the T ¼ 0 causal impurity Green’s function

GσðωÞ and self-energy ΣσðωÞ defined at eV ¼ 0:

GσðωÞ ¼
1

ω − ϵdσ þ iΔsgnðωÞ − ΣσðωÞ
: ð3Þ

The phase shift cot δσ ≡ ½ϵdσ þ Σσð0Þ�=Δ, or the density of
states ρdσ ≡ −ImGσð0þÞ=π at ω ¼ 0, is a primary para-
meter which characterizes the Fermi-liquid ground state.
The Friedel sum rule relates δσ to the occupation number
which can also be given by the first derivative of the free
energy Ω≡ −T log ½Tre−H=T �,

hndσi ¼
∂Ω
∂ϵdσ ⟶

T→0 δσ
π
: ð4Þ

The leading Fermi-liquid corrections are determined by the
static susceptibilities [10],

χσσ0 ≡ −
∂2Ω

∂ϵdσ0∂ϵdσ ¼ −
∂hndσi
∂ϵdσ0 ⟶

T→0
ρdσχ̃σσ0 : ð5Þ

It can also be expressed as χσσ0 ¼
R ð1=TÞ
0 dτhδndσ0 ðτÞδndσi,

and χ̃σσ0 ≡δσσ0 þ∂Σσð0Þ=∂ϵdσ0 is an enhancement
factor similar to the Stoner factor. The usual spin
and charge susceptibilities, χs≡−1

4
½ð∂2ΩÞ=ð∂h2Þ� and

χc≡−½ð∂2ΩÞ=ð∂ϵ2dÞ�, are given by linear combinations
of χσσ0 [31]. These susceptibilities also determine the
characteristic energy scale 4T� ≡ 1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

χ↑↑χ↓↓
p and the

Wilson ratio RW ≡ 1–4T�χ↑↓ which corresponds to a
dimensionless quasiparticles interaction [21,32].
Away from half filling, the third derivatives of the free

energy also contribute to the next leading Fermi-liquid
corrections, as we will show later

χ½3�σ1σ2σ3 ≡ −
∂3Ω

∂ϵdσ1∂ϵdσ2∂ϵdσ3
¼ ∂χσ2σ3

∂ϵdσ1
: ð6Þ

It can also be expressed as a static three-point function of
the impurity occupation δndσ ≡ ndσ − hndσi,

χ½3�σ1σ2σ3 ¼−
Z 1

T

0

dτ3

Z 1
T

0

dτ2hTτδndσ3ðτ3Þδndσ2ðτ2Þδndσ1i:

ð7Þ

Higher-order Fermi-liquid corrections at T ¼ 0.—The
Ward identity, which reflects the current conservation for
each spin component σ, plays a central role [13],
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∂ΣσðωÞ
∂ω δσσ0 þ

∂ΣσðωÞ
∂ϵdσ0 ¼ −Γσσ0;σ0σðω; 0; 0;ωÞρdσ0 : ð8Þ

Here, the total vertex Γσ1σ2;σ3σ4ðω1;ω2;ω3;ω4Þ includes all
contributions of multiple scattering, and Fig. 1 shows the
assignment of arguments. The antisymmetry properties
of the total vertex also impose strong restrictions on the
low-energy behavior as a consequence of the exclusion
principle [2,3,8,33],

Γσ1σ2;σ3σ4ðω1;ω2;ω3;ω4Þ
¼ −Γσ3σ2;σ1σ4ðω3;ω2;ω1;ω4Þ
¼ Γσ3σ4;σ1σ2ðω3;ω4;ω1;ω2Þ
¼ −Γσ1σ4;σ3σ2ðω1;ω4;ω3;ω2Þ: ð9Þ

For instance, at zero frequencies the parallel-spin compo-
nent vanishes Γσσ;σσð0; 0; 0; 0Þ ¼ 0, and the leading Fermi-
liquid relations [34] follow from Eq. (8).
Another important clue is the analytic property. The

nonanalytic part of the vertex function is accompanied by
the “sgn” functions and is purely imaginary, while the
analytic part is real. Thus, the low-frequency expansion of
the real part of Γσσ;σσðω1;ω2;ω3;ω4Þ starts with a homo-
geneous polynomial of degree one. However, such a homo-
geneous polynomial of linear form cannot satisfy the
antisymmetry property Eq. (9) provided ω1 þ ω3 ¼
ω2 þ ω4. Therefore, the parallel-spin component does not
have an analytic part of linear order. Thus, for ω2 ¼ ω3 ¼ 0,

∂
∂ωReΓσσ;σσðω; 0; 0;ωÞρdσ

����
ω→0

¼ 0: ð10Þ

To our knowledge, this property has not explicitly been
recognized so far. We have also calculated the skeleton
diagrams for Γσσ;σσðω; 0; 0;ωÞ up to order U4 and have
confirmedEq. (10) perturbatively [35]. In the linear order, the
nonanalytic part shows the jωj dependence [12] with a
coefficient determined by Yamada and Yosida [11]:

Γσσ;σσðω; 0; 0;ωÞρ2dσ ¼ iπχ2↑↓ω sgnðωÞ þOðω2Þ: ð11Þ

A series of higher-order Fermi-liquid relations follow from
this property of the total vertex for parallel spins.
We obtain an identity between the double derivatives of

the real part of the self-energy using Eqs. (8) and (10),

Re
∂2ΣσðωÞ
∂ω2

����
ω→0

¼ ∂2Σσð0Þ
∂ϵ2dσ : ð12Þ

Note that ∂2Σσð0Þ=∂ϵ2dσ ≡ ∂χ̃σσ=∂ϵdσ by definition, and
Eq. (12) agrees with FMvDM’s result given in Eq. (B8b) of
Ref. [18]. Furthermore, using Eqs. (8) and (12), the total
vertex for antiparallel spins can be calculated exactly up to
terms of order ω2,

Γσ;−σ;−σ;σðω;0;0;ωÞρdσρd;−σ
¼−χ↑↓þρdσ

∂χ̃σ;−σ
∂ϵdσ ω

þρdσ
2

∂
∂ϵd;−σ

�
−
∂χ̃σσ
∂ϵdσ þ iπ

χ2↑↓
ρdσ

sgnðωÞ
�
ω2þ�� � : ð13Þ

Note that the ω-linear contribution is real and analytic.
We see in Eqs. (12) and (13) that expansion coefficients

depend on ∂χ̃σσ0=∂ϵdσ00 which includes contributions from

three-body fluctuations χ½3�σσ0σ00 . The three-body correlations
vanish in the particle-hole symmetric case since the spin
(charge) susceptibility takes a maximum (minimum):
∂χs=∂ϵd ¼ 0 and ∂χc=∂ϵd ¼ 0 at ϵd ¼ −U=2 and h ¼ 0.
We also find that the ω2 term of Eq. (13) involves four-body
fluctuations in the real part through ∂2χ̃σσ=∂ϵdσ∂ϵd;−σ which
remains finite even in the particle-hole symmetric case. The
four-body fluctuations will also contribute to higher-order
terms of the parallel-spin vertex.
We have also calculated the total vertex for two inde-

pendent frequencies up to linear order in ω and ω0:

Γσσ;σσðω;ω0;ω0;ωÞρ2dσ ¼ iπχ2↑↓jω − ω0j þ � � � ; ð14Þ
Γσ;−σ;−σ;σðω;ω0;ω0;ωÞρdσρd;−σ

¼ −χ↑↓ þ ρdσ
∂χ̃σ;−σ
∂ϵdσ ωþ ρd;−σ

∂χ̃−σ;σ
∂ϵd;−σ ω

0

þ iπχ2↑↓ðjω − ω0j − jωþ ω0jÞ þ � � � : ð15Þ
The analytic real part can be deduced fromEqs. (11) and (13)
using the antisymmetry properties, Eq. (9). The nonanalytic
part has been obtained through an additional consideration
about the singular Green’s-function products [7,13,15].
Specifically, the jω − ω0j and jωþ ω0j contributions emerge
from the intermediate particle-hole and particle-particle pair
excitations, respectively. We note that the total vertex,
Eqs. (14) and (15), can be regarded as a quantum-impurity
analogue of Landau’s phemomenological interaction
fpσ;p0σ0 , and can also be compared with Nozières’ function
ϕσσ0 ðε; ε0Þ [1,9]. One of the advantages of the microscopic
formulation to the phenomenological descriptions is that the
real and imaginary parts, which contribute to the energy-
shift and damping of quasiparticles, are described in a
unified way with clearly defined correlation functions.
The T2 and ðeVÞ2 self-energy corrections.—The T2

correction of the retarded self-energy Σr
σðω; TÞ can be

FIG. 1. Total vertex Γσ1σ2;σ3σ4ðω1;ω2;ω3;ω4Þ satisfies the
antisymmetry property: Eq. (9) with ω1 þ ω3 ¼ ω2 þ ω4.
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deduced from the derivative of Γσσ0;σ0σðω;ω0;ω0;ωÞ with
respect to ω0 using the formula [2,11,35]

Σr
σð0; TÞ − Σr

σð0; 0Þ ¼
ðπTÞ2
6

lim
ω→0þ

ΨσðωÞ þ � � � ð16Þ

ΨσðωÞ≡ lim
ω0→0

∂
∂ω0

X
σ0
Γσσ0;σ0σðω;ω0;ω0;ωÞρdσ0 ðω0Þ: ð17Þ

Substituting Eqs. (14) and (15) into Eq. (17) [36], we
obtain

lim
ω→0

ΨσðωÞ ¼
1

ρdσ

∂χ↑↓
∂ϵd;−σ − i3π

χ2↑↓
ρdσ

sgnðωÞ: ð18Þ

Here, the real part, ∂χ↑↓=∂ϵd;−σ , emerges from the analytic
part of the total vertex for antiparallel spins.
In a previous work, we have diagrammatically shown that

the low-bias ðeVÞ2 self-energy can be calculated taking
a variational derivative of the equilibrium self-energy
with respect to the internal Green’s functions [15,37].
Revisiting the details of the calculation, we find exactly
the same quantum-mechanical intermediate states, which

consequently lead to Eq. (18), determine both the ðeVÞ2
and T2 corrections [38]. The relation between these two
corrections had been first pointed out by FMvDM using
Nozières’ description [18]. Our result provides a complete
proof for this observation.
Using the above results, low-energy behavior of the

retarded self-energy Σr
σðω; T; eVÞ is exactly determined

up to terms of order ω2, T2, and ðeVÞ2. To be specific,
the bias voltage eV ≡ μL − μR is applied through the
chemical potentials of the left and right leads, μL ¼ αLeV
and μR ¼ −αReV, with additional parameters satisfying
αL þ αR ¼ 1. Thus, the self-energy generally depends not
only on eV but also α≡ ðαLΓL − αRΓRÞ=ðΓL þ ΓRÞ [15].
The asymptotically exact imaginary and real parts of the
retarded self-energy are given by

ImΣr
σðω;T;eVÞ

¼−
π

2

χ2↑↓
ρdσ

�
ðω−αeVÞ2þ 3ΓLΓR

ðΓLþΓRÞ2
ðeVÞ2þðπTÞ2

�
þ��� :

ð19Þ

ϵdσ þ ReΣr
σðω; T; eVÞ ¼ Δ cot δσ þ ð1 − χ̃σσÞωþ 1

2

∂χ̃σσ
∂ϵdσ ω

2 þ 1

6ρdσ

∂χ↑↓
∂ϵd;−σ

�
3ΓLΓR

ðΓL þ ΓRÞ2
ðeVÞ2 þ ðπTÞ2

�

− χ̃σ;−σαeV þ ∂χ̃σ;−σ
∂ϵdσ αeVωþ 1

2

∂χ̃σ;−σ
∂ϵd;−σ α

2ðeVÞ2 þ � � � : ð20Þ

We note that Eq. (20) is consistent with the previous result
of ours [15], derived for general electron fillings without
the knowledge of Eq. (12) [39]. Equation (20) is a
generalized formula of the real part, which also extends
FMvDM’s result [18] to asymmetric junctions α ≠ 0 [35].
Nonequilibrium magnetotransport.—We next consider

the current flowing through the Anderson impurity I [40],
using the Meir-Wingreen formula [41] with Eqs. (19) and
(20). Specifically, we examine a symmetric junction with
ΓL ¼ ΓR and μL ¼ −μR ¼ eV=2, for which the conduct-
ance can be expressed in the form

dI
dV

¼ e2

2πℏ

X
σ

½sin2δσ − cT;σðπTÞ2 − cV;σðeVÞ2�; ð21Þ

cT;σ¼
π2

3

�
−cos2δσðχ2σσþ2χ2↑↓Þþ

sin2δσ
2π

�∂χσσ
∂ϵd þσ

∂χ↑↓
∂h

��
;

ð22Þ

cV;σ ¼
π2

4

�
− cos 2δσðχ2σσ þ 5χ2↑↓Þ

þ sin 2δσ
2π

�∂χσσ
∂ϵd þ ∂χ↑↓

∂ϵd þ σ2
∂χ↑↓
∂h

��
: ð23Þ

Here, contributions of the three-body fluctuations enter
through the derivatives of susceptibilities with respect
to ϵd or h, which are accompanied by the factor sin 2δσ.
For the magnetoconductance in the Kondo regime,
there is a controversial issue [18]: whether or not the
zero-bias peak of dI=dV splits at a magnetic field of
the order of the Kondo energy scale TK. We demon-
strate in the following that calculations with the exact
conductance formula, Eqs. (22) and (23), resolve the
problem [35].
We have calculated the phase shift δσ and the enhance-

ment factor χ̃σσ0 as functions of h at ϵd ¼ −U=2 using the
NRG [42,43]. The dimensionless coefficients C̄T ¼
T2
K

P
σcT;σ=2 and C̄V ¼ T2

K

P
σcV;σ=2 have been deter-

mined substituting the NRG results into Eqs. (22) and
(23). The result is shown in Fig. 2 as a function of h=TK ,
using TK ¼ 1=4χ↑↑ defined at h ¼ 0 for each case ofU=πΔ
(¼ 3.0, 3.5, 4.0) [44]. We see that both C̄T and C̄V show the
universal Kondo behavior. This is consistent with the
behavior of the Wilson ratio which is almost saturated to
the strong-coupling value RW ≃ 2 for U=πΔ≳ 3 [42].
Furthermore, C̄T and C̄V change sign at h of order TK:
at very close magnetic-field values h ≃ 0.38TK . This means
that the zero-bias peak does split for h≳ 0.38TK because
dI=dV increases from the zero-bias value as eV increases.
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These observations are consistent with the previous second-
order renormalized perturbation result [45].
Conclusion.—We have provided a many-body quantum

theoretical description of the Fermi-liquid state in the
particle-hole asymmetric case. The Fermi-liquid corrections
away from half filling are characterized by additional con-
tributions of the three-body fluctuations which enter through
the nonlinear response function χ½3�σ1σ2σ3 . The asymptotically
exact expression of the total vertex Γσσ0;σ0σðω;ω0;ω0;ωÞ
describes low-energy properties in a unifiedway: this function
and its derivatives with respect to ω or ω0 determine the
quasiparticle interaction, energy shift, damping, and transport
coefficients can be generated systematically up to order ω2,
T2, and ðeVÞ2, with the Ward identities given in Eqs. (8) and
(17). Furthermore, the nonequilibrium self-energy Eq. (20) is
applicable to the asymmetric tunneling couplings, and has
potential application for real quantum dots [28–30]. We have
also demonstrated an application to the nonlinear magneto-
conductance through a quantumdot in theKondo regime, and
have shown that the zero-bias peakofdI=dV splits naturally at
a magnetic finite field of order TK. Our description can be
extended, and may be used, to explore a wide class of Kondo
systems and more general quantum impurities.
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