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We present a study of thermal conductivity, κ, in undoped and doped strontium titanate in a wide
temperature range (2–400 K) and detecting different regimes of heat flow. In undoped SrTiO3, κ evolves
faster than cubic with temperature below its peak and in a narrow temperature window. Such behavior,
previously observed in a handful of solids, has been attributed to a Poiseuille flow of phonons, expected to
arise when momentum-conserving scattering events outweigh momentum-degrading ones. The effect
disappears in the presence of dopants. In SrTi1−xNbxO3, a significant reduction in lattice thermal
conductivity starts below the temperature at which the average inter-dopant distance and the thermal
wavelength of acoustic phonons become comparable. In the high-temperature regime, thermal diffusivity
becomes proportional to the inverse of temperature, with a prefactor set by sound velocity and Planckian
time (τp ¼ ðℏ=kBTÞ).
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Heat travels in insulators thanks to phonons. This has
been described by the Peierls-Boltzmann equation, which
quantifies the spatial variation in phonon population caused
by the temperature gradient. In recent years, thanks to
improved computing performance and new theoretical
techniques, a quantitative account of the intrinsic thermal
conductivity of semiconductors is accessible to first-
principles theory [1]. When most scattering events conserve
momentum and do not decay heat flux, collective phonon
excitations, dubbed relaxons, become fundamental heat
carriers [2]. This hydrodynamic regime of phonon flow,
identified decades ago [3–6], is gaining renewed attention in
the context of graphene-like two-dimensional systems [7,8].
The perovskyte SrTiO3 is a quantum paraelectric [9],

which owes its very existence to zero-point quantum
fluctuations. First-principles calculations find imaginary
phonon modes [10], which hinder a quantitative under-
standing of the lattice thermal transport [11]. This insulator
turns to a metal upon the introduction of a tiny concen-
tration of dopants. The metal has a dilute superconducting
ground state [12] and an intriguing room-temperature
charge transport [13]. Its thermal conductivity has remained
largely unexplored, in contrast to electric [14] and thermo-
electric [15] transport.
In this Letter, we present an extensive study of the

thermal conductivity, κ, of undoped and doped SrTiO3

crystals and report on three new findings. First of all, in a
narrow temperature range, thermal conductivity evolves
faster than cubic. This behavior had only been reported in a
handful of solids [6] and attributed to a Poiseuille flow of
phonons. We argue that the emergence of phonon

hydrodynamics results from the multiplication of momen-
tum-conserving scattering events due to the presence of a
ferroelectric soft mode, as suggested decades ago [16].
This interpretation lends support to previous reports on the
observation of the second sound in this system [17,18],
which has been controversial [19]. Second, our study finds
that a random distribution of dopants drastically reduces
thermal conductivity below a temperature which tunes the
heat-carrying phonon wavelength to the average interdo-
pant distance. Finally, we put under scrutiny the thermal
diffusivity of the system near room temperature and link its
magnitude and temperature dependence to the so-called
Planckian scattering time [20], in the context of the
ongoing debate on a possible boundary to diffusivity
[21,22].
The cubic elementary cell of strontium titanate encloses

a TiO6 octahedra and has strontium atoms at its vertices
[Fig. 1(a)]. Neutron and Raman scattering studies have
identified two distinct soft modes. The first is associated
with the antiferrodistortive (AFD) transition, which leads to
the loss of cubic symmetry at 105 K [23] by tilting two
adjacent TiO6 octahedra in opposite orientations. It is
centered at the R point of the Brillouin zone [Fig. 1(b)].
The second soft mode [24], located at the zone center, is
associated with the aborted ferroelectricity. Figure 1(c)
presents the temperature dependence of the two modes
established by converging spectroscopic tools [23,25,26].
In common solids, only acoustic branches can host ther-
mally excited phonons at low temperatures. Here, phonons
associated with these soft modes remain relevant down to
fairly low temperatures.
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We used a standard one-heater, two-thermometers tech-
nique to measure the thermal conductivity of commercial
single crystal of Sr1−xNbxTiO3 (see the Supplemental
Material [27]). The results, presented in Fig. 1(d), reveal
different regimes of heat transport classified by previous
authors [4,6,8]. Simply put, thermal conductivity is the
product of specific heat, mean free path, and velocity [33].
At one extreme, i.e., at low temperature, the phonon mean
free path saturates, the system enters the ballistic regime,
and κ becomes cubic in temperature. In the other extreme,
at high temperature, the specific heat saturates and thermal
conductivity, reflecting the temperature dependence of the
mean free path, follows T−1. In this kinetic regime, the
wave vector of thermally excited phonons is large enough
to allow umklapp scattering events. Well below the Debye
temperature, such events become rare and κ increases
exponentially. This is the Ziman regime.
The AFD transition has visible consequences for heat

transport. First of all, it attenuates κ near TAFD, impeding a
smooth evolution between T−1 and exponential regimes.
The R-point soft mode associated with the AFD transition

provides additional umklapp scattering at low energy cost.
Interestingly, fitting κ ∝ exp½ðED=TÞ� in the Ziman regime,
one finds ED ≃ 20 K, an energy scale comparable to the
AFD soft mode. The second consequence of the AFD
transition is to generate multiple tetragonal domains in an
unstrained crystal [34]. Given that the typical size of
tetragonal domains is a few microns [35], the upper
boundary to the ballistic mean free path of phonons can
be much lower than it is in the sample dimensions.
We found a κ varying faster than T3 in a narrow

(6 K < T < 13 K) temperature window just below the
peak. Usually, the ballistic regime ends with a downward
deviation of κ from its cubic temperature dependence. This
happens in silicon [36] [Fig. 2(a)] or in KTaO3 [Fig. 2(b)].
This is not the case in bismuth, where it shows an upward
deviation between the ballistic regime and the peak
[Fig. 2(c)]. This has been identified as a signature of a
Poiseuille flow of phonons [37].
The Poiseuille regime emerges when energy exchange

between phonons is frequent enough to keep the local
temperature well defined, and umklapp collisions are
so rare that the flow is mainly impeded by boundary
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FIG. 1. (a) Crystal structure of strontium titanate. (b) The cubic
Brillouin zone and its high-symmetry points. (c) The temperature
dependence of the two soft modes according to neutron scattering
studies [23] and hyper-Raman [25] and Brillouin scattering
spectroscopy [26]. (d) Thermal conductivity of a SrTiO3 crystal
(closed red squares) in a log-log plot [for a linear plot, see
Fig. 3(a)]. Different regimes of thermal transport are identified.
Solid lines represent the expected behaviors in these regimes. An
additional window due to enhanced umklapp scattering opens up
in the vicinity of the antiferrodistortive (AFD) transition.
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FIG. 2. Thermal conductivity, κ, as a function of T3, (a) in
silicon (after Ref. [36]) and (b) in KTaO3. In both, κ deviates
downward from the T3 line. (c) In bismuth (after Ref. [37]), it
deviates upward. (d–f) In three different crystals of SrTiO3, the
deviation is upward. (g) The thermal conductivity and specific
heat of SrTiO3 evolve faster than cubic in this temperature range.
But in a narrow window, thermal conductivity increases more
rapidly. (h) The apparent mean free path in both Bi and SrTiO3

present a local peak, the hallmark of Poiseuille flow.
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scattering. Without viscosity, no external temperature
gradient would be then required to sustain the phonon
drift [5]. This picture, developed decades ago [3–5],
requires a hierarchy of time scales. The time separating
two normal scattering events, τN , should become much
shorter than the time between boundary scattering events,
τB, and the latter much shorter than the time between
resistive scattering events, τR, which are due to either
umklapp or impurity scattering. The same hierarchy
(τN ≪ τB ≪ τR) is required for second sound, a wavelike
propagation of temperature and entropy, which has been
observed in bismuth as well as in other solids displaying
Poiseuille flow [6].
We confirmed a faster-than-cubic κ in three different

SrTiO3 crystals [Figs. 2(d)–2(f)]. Here, the identification of
this behavior with Poiseuille flow is less straightforward,
since the specific heat of SrTiO3 also evolves faster than
cubic between 4 K and 20 K [38]. This is because the
Debye approximation is inadequate in the presence of soft
modes, and one needs to consider Einstein terms of the soft
optical modes. In order to address this concern, we
measured the specific heat of our cleanest crystal and
found that the thermal conductivity increases faster than the
specific heat [Fig. 2(g)]. The effective phonon mean free
path, lPh ¼ ð3κCp=vsÞ, extracted from the specific heat,
Cp, and the sound velocity, vs, was found to show a peak
comparable to what was found in bismuth [37] [Fig. 2(h)].
In both cases, lPh presents a local maximum 1.3 times the
Knudsen minimum. The magnitude of the latter is slightly
smaller than the crystal dimensions in bismuth, and similar
to the typical size of tetragonal domains in strontium
titanate, which have been found to be of the order of a
micrometer [35]. As far as we know, the only available
explanation for a local peak in lPh is Poiseuille flow.
Neither in bismuth nor in strontium titanate is the chemical

purity exceptionally high. The same is true of black phos-
phorus, where a faster-than-cubic κ was recently observed
[39]. Therefore, in these cases, in contrast to He crystals, the
Poiseuille flow is presumably caused by a large three-phonon
phase space [40] for momentum-conserving (compared to
momentum-degrading) scattering events. We note that the
low-temperature validity of the τN ≪ τR inequality in stron-
tium titanate was previously confirmed by low-frequency
light scattering experiments [18]. Anomalies detected by
Brillouin scattering experiments [26] are believed to be
caused by strong anharmonic coupling between acoustic
and optical modes at low temperatures. A strong hybridiza-
tion between acoustic and transverse optical phonons was
theoretically confirmed [41] and is expected to flatten the
phonon dispersion. This would pave the way for frequent
normal momentum exchange. It would also pull down the
phonon velocity, providing an alternative explanation for an
unusually short apparent mean free path.
Let us turn our attention to the effect of atomic

substitution. Figure 3(a) shows the thermal conductivity

of SrTi1−xNbxO3. The magnitude of κ smoothly decreases
with increasing dopant concentration. Only at lower tem-
peratures, additional contribution by electrons outweighs
the reduction in lattice thermal conductivity. In this range,
we resolve a finite-T linear component in thermal conduc-
tivity of metallic samples due to the electronic component
of thermal conductivity, κe. This is in agreement with a
previous study focused on temperatures below 0.5 K [42],
which verified the validity of the Wiedemann-Franz (WF)
law in the zero-temperature limit, namely κeρ=T ¼ L0,
where ρ is the electric resistivity and L0 ¼ 2.45 ×
10−8 V2=K2 is the Lorenz number. Assuming the validity
of the WF law at finite temperatures, one can separate the
electronic, κe, and the phononic, κph, components of the
total thermal conductivity. At finite temperature, because of
inelastic scattering, one expects κeρ=TL0 ≤ 1 and electric
resistivity provides only a rough measure of κe, which, as
seen in Fig. 3(b), becomes rapidly much smaller than κph
with rising temperature.

(a)

(b)

(c)

FIG. 3. (a) κ as a function of temperature in SrTi1−xNbxO3.
(b) Electronic, κe and phononic, κph, components of the thermal
conductivity in three doped samples compared to undoped strontium
titanate. Note the persistence of a T3 behavior over a wide temper-
ature window with a drastically reduced magnitude. (c) Relative
attenuation in phonon thermal conductivity,Δκph¼1−(κphðx≠0Þ=
κphðx¼0Þ) in SrTi1−xNbxO3 (top) and in Sr1−xCax TiO3

(x ¼ 0.0045) and in SrTiO3−δ (n ¼ 7 × 1017 cm−3). Small arrows
represent Tqn (See text).
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The first consequence of the disorder, introduced by this
tiny substitution for κph, is the loss of the faster-than-cubic
regime associated with Poiseuille flow. As seen in Fig. 3(b),
reminiscent of what was observed in doped silicon and
germanium [43], doping drastically damps κph at low
temperatures. The temperature dependence of the attenu-
ation of phonon thermal conductivity caused by substitu-
tion, Δκph ¼ 1 − κphðx ≠ 0Þ=κphðx ¼ 0Þ, presented in
Fig. 3(c), displays a regular pattern. For a small substitution
(x ¼ 0.0004), the lattice thermal conductivity is reduced by
8% at room temperature, by as much as 70% at 20 K, and
by 20% at 3 K. In other words, the maximum attenuation
occurs in an intermediate temperature window. With
increasing Nb concentration, the pattern is similar, but it
shifts to higher temperatures. As seen in the lower panel of
Fig. 3(c), our measurements on an oxygen-reduced and a
calcium-substituted sample produce similar patterns. Since
Ca substitution [44] keeps the system an insulator, one can
conclude that the drastic reduction in lattice conductivity is
mainly due to the random distribution of substituting atoms
and not to the scattering by mobile electrons.
A rigorous account of the temperature dependence of

Δκph is missing. We note, however, that Δκph drastically
enhances at a temperature which shifts upward as the
concentration increases [see upward arrows in Fig. 3(c)].
Consider that with decreasing temperature, the typical wave
vector of thermally excited phonons shrinks, following
qph ¼ ðkBT=ℏvsÞ. Therefore, at high temperature, the
phonon wavelength is shorter than the average distance
between dopants, and the effect of disorder is limited. The
random distribution of dopants begins to matter when the
phonon wavelength becomes comparable to the average
interdopant distance. In contrast to electrons, Anderson
localization of phonons [45] is not expected to impede
diffusive transport [46]. Theoretically, a tiny level of
disorder is sufficient to transform some phonon modes
from propagating waves (propagons) to diffusons, which
travel diffusively, or to fully localized locons [47]. One
expects phonons with a wavelength much shorter or much
longer than the randomness length to be less affected. As a
consequence, attenuation is to be more pronounced in
the temperature window where the most concerned
phonons happen to be dominant thermally excited carriers
of heat. For each concentration, n, a temperature, Tqn ¼
hvs=lddkB, can be defined, which corresponds to equality
between the typical acoustic phonon wavelength, λph ¼
2π=qph, and interdopant distance, ldd ¼ n−1=3. As one can
see in Fig. 3(c), Tqn is close to where Δκph becomes large.
Such a crude picture based on the Debye approximation
should not be taken too literally in the presence of
soft modes.
In principle, ab initio calculations [1] can give an

account of heat transport near room temperature.
Recently, two groups [48,49] succeeded in determining

the phonon spectrum of strontium titanate free of the
commonly found imaginary frequencies [10] and in com-
puting the intrinsic lattice conductivity of the cubic phase.
Figure 4(a) compares our high-temperature data with these
calculations [48,49] as well as previous experimental
reports [11,50,51]. As one can see in the figure, there is
broad agreement between experimental results. Theoretical
calculations using the generalized gradient approximation
(GGA) [48] are very close to the experimental data above
250 K. On the other hand, the experimental slope matches
more the theory based on microscopic anharmonic force
constants [49].
Let us conclude with a short discussion of thermal

diffusivity, D ¼ ðκ=CpÞ in this regime. We can extract D
by combining our thermal conductivity data and the
specific heat. Figure 4(b) presents the temperature depend-
ence of thermal diffusivity. One can see that, at room
temperature and above, thermal diffusivity tends to be
proportional to T−1. Our data are in good agreement with
reported values of thermal diffusivity at high temperatures
[52]. In the vicinity of room temperature and above,
thermal diffusivity becomes proportional to the inverse
of temperature. The thermal diffusivity of a good conductor
of heat, silicon, and a very bad one, PbTe, are also shown.

(a)

(b)

FIG. 4. (a) Thermal conductivity at high temperatures com-
pared to previous experimental reports [11,50,51] and theoretical
calculations [48,49]. (b) Thermal diffusivity, D, extracted from
thermal conductivity and specific heat data as a function of
temperature in SrTiO3 (solid blue circles) together with data from
Ref. [52] (open circles), compared to silicon and PbTe. Solid lines
represent D ¼ sv2sτP (see text).
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Remarkably, in the two bad conductors, the magnitude and
the temperature dependence of D in the high-temperature
regime can be expressed in a very simple way:

D ¼ sv2sτp: ð1Þ

Here, τp ¼ ðℏ=kBTÞ is the Planckian scattering time
[20], and s is a dimensionless parameter (see Table I). In
PbTe and SrTiO3, s is close to unity, and the temperature
dependence is set by τp. It emerges as a useful parameter for
comparing the thermal conductivity of different cubic
insulators. In many perovskytes, recently studied by
Hofmeister [52], D has a comparable magnitude and
temperature dependence. On the other hand, in a highly
conducting cubic insulator such as silicon,D is much larger
and drops faster, presumably because the phase space for
three-phonon scattering umklapp events [40] is smaller.
Equation (1) is strikingly similar to the universal

boundary on diffusivity suggested by Hartnoll [21], with
sound velocity replacing the Fermi velocity. The exper-
imental motivation for Hartnoll’s proposal [21] was the fact
that τp is the average scattering rate of electrons in
numerous metals with linear resistivity [20]. Is there a
boundary to thermal transport by phonons in insulators? In
other words, is there a fundamental reason for s to remain
larger than unity? These are the questions raised by our
observation.
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and K. Behnia, npj Quantum Mater. 2, 41 (2017).
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