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Nonreciprocal Thermal Material by Spatiotemporal Modulation
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The thermal properties of a material with a spatiotemporal modulation, in the form of a traveling wave, in
both the thermal conductivity and the specific heat capacity are studied. It is found that these materials
behave as materials with an internal convectionlike term that provides them with nonreciprocal properties,
in the sense that the heat flux has different properties when it propagates in the same direction or in the
opposite one to the modulation of the parameters. An effective medium description is presented which
accurately describes the modulated material, and numerical simulations support this description and verify
the nonreciprocal properties of the material. It is found that these materials are promising candidates for the
design of thermal diodes and other advanced devices for the control of the heat flow at all scales.
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The research on materials with nonreciprocal thermal
properties has received a great amount of attention in recent
years. These materials have different propagation of ther-
mal energy along two opposite directions. With the so-
called thermal diode being the most immediate application
of these structures [1], other devices and applications are
easily envisioned, like thermal transistors and even logic
circuits [2]. Nonreciprocal materials have been properly
studied theoretically and experimentally at different scales
[3-6], and it has been demonstrated that the realization of a
nonreciprocal material requires the use of a combination of
nonlinear and asymmetric structures [7]. However, the
realization of nonreciprocal materials based on nonlinear
elements limits their applicability, since nonlinearity does
not occur at all temperatures and scales, so that we find that
the rectification properties of the materials are efficient in
only a short range of temperatures.

In this context, metamaterials, which are artificially
structured materials with a priori-designed properties, have
overcome one of the major drawbacks of common materi-
als, since their properties depend on the internal artificial
structure and not on intrinsic properties of the constituent
materials, which in turn allows us to decide at which scale,
frequency, or temperature range we want to operate [8].
Here, a special type of metamaterial is employed presenting
nonreciprocal properties, which consists of a material
where the thermal properties are functions of both space
and time in a wavelike fashion. This special type of
modulation has been studied in elastic and acoustic
materials [9—12], whose nonreciprocal properties for the
propagation of waves have been widely demonstrated. We
will apply these ideas to the diffusion equation describing
thermal waves in solids, and nonreciprocal thermal trans-
port will be found.
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We present therefore an alternative mechanism for the
realization of nonreciprocal thermal materials that can be
applied to any scale, as long as the thermal transport is
dominated by diffusion. It is demonstrated that, when the
spatiotemporal modulation of the thermal properties of a
material is of the form of a traveling wave, the material
presents nonreciprocal thermal transport. Moreover, it is
demonstrated that an effective medium description is
possible for such a material, in which it is described as
a homogeneous solid with constant constitutive parameters
(in both space and time) but in which the temperature field
satisfies a convection-diffusion equation. In other words, it
is demonstrated that, although there is no transport of
matter in the solid material, in an effective way an internal
convective term appears, which is responsible for providing
nonreciprocal properties to the solid even in the stationary
regime. Analytical expressions are given for the effective
parameters and time-domain numerical simulations show a
perfect agreement with the effective medium description.

Figure 1 shows an example of realization of a material
with a spatiotemporal modulation in its constitutive param-
eters. Panel (a) shows a homogeneous material B with a
thermal conductivity op. Let us assume that the material’s
conductivity is sensitive to the application of some external
field E, which can be the electric, magnetic, or acoustic
fields, for instance. Then, when the external field is applied,
the conductivity changes to 64 = o + yE, with y being
some coupling constant. Panel (a) shows the situation when
the external field is turned off, and panel (b) shows a
situation in which we have turned on the external field but
only in the regions marked by the arrows, so that it changes
the material from o3 to 6,4 only in the neighborhood of the
arrows. We have therefore induced a layered material by
means of the external field E(x), so that the conductivity of
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FIG. 1. Schematic representation of a possible realization of a
material with a spatiotemporal modulation in the conductivity
and the mass density.

the material is now o(x) = op + (04 — op)rect(2zx/d).
Since the external field is induced artificially, we can set
up the origin of the modulation, as shown in panel (c), where
ithas been displaced by a quantity A, so that the conductivity
isnow o(x) = o + (64 — op)rect[2z(x — A)/d|. Finally, if
the external field is synchronized so that the spatial modu-
lation is traveling along the x direction at a speed v, as
represented in the panel (d), the induced conductivity will be
a function of both space and time of the form o(x) =
op + (04 — op)rect[2n(x — vyt)/d]. Thereader interested in
a possible mechanical realization of these materials can find
a proposal through the movie ‘“chaincylinders.gif,” and its
brief discussion in the Supplemental Material [13].

The procedure described before shows that in order to
have a spatiotemporal modulation in the thermal properties
of a material we need essentially a tunable material whose
control parameter could be modulated in both space and
time. The domain of tunable metamaterials is broad enough
to allow us to consider this modulation feasible, so that in
the most general case we can postulate that we can obtain a
materials whose thermal properties modulated in a wave-
like fashion, 6 = o(x — vot) and p = p(x — vyt), with o
and p being periodic functions of n = x — vyt with period
d. In a material with these properties, the energy balance is
described by means of the local diffusion equation

%(m-vor)%) :p(x—vot)%, (1)

where the heat capacity has been set to 1 in order to
simplify the notation; however, it is evident that in the
above equation p means the specific heat capacity. It has to
be pointed out that Eq. (1) is a particular case of a more
general problem in which a term containing the temporal
derivative of p should be added; however, this term is
canceled by the external field inducing the modulation, as

explained in the Supplemental Material [13], which
includes Ref. [14].

In the so-called homogenization limit the spatiotemporal
variation of the constitutive parameters is not “visible,” and
the material is perceived as a homogeneous material with
some effective properties. In the following lines it will be
shown that the homogeneous version of Eq. (1), which
defines these effective parameters, contains additional
constitutive parameters that induces nonreciprocity in the
effective material.

The homogenization of Eq. (1) can be done more
efficiently under the change of variables n = x — vyt and
T = t, so that the diffusion equation takes the form

or (a0050) =p0 G = mp 5o 2

which is a differential equation in which the coefficients
depend only on the variable n. Equation (2) is a partial
differential equation in the variables n and 7 in which the
coefficients are periodic functions of n with period d, so
that Bloch theorem applies and the solutions for the
temperature field are linear combinations of eigenfunctions
of the form

T(n,t) = e K" p(n), (3)

with ¢(n) being a d-periodic function of the variable n with
the same periodicity of ¢ and p.

The spatiotemporal behavior of the temperature field is
therefore composed of the “macroscopic” function
e~ Knei% modulated by a “microscopic” function ¢(n)
over the period d. When the spatial variations of the field
are larger than the typical period d, Eq. (2) can be replaced
by a “homogenized” version with constant coefficients with
the same solution Q = Q(K). Once the equation in the
traveling frame is homogenized, we can return to the frame
at rest to study its properties, however, when we return to
the system at rest, we do not recover a Fourier-type
differential equation [like Eq. (1)] with constant coeffi-
cients, as should be expected, but we obtain a more
complicated equation, in which additional constitutive
parameters appear (see the Supplemental Material [13]
for further details),

LoXT) o)y - 9(T)
o P o T

—i(S+ s')%. (4)

Therefore, the homogenized equation is the convection-
diffusion equation with two additional coefficients, S and
S’, which are the thermal equivalent of the Willis coef-
ficients found in the elastodynamics of inhomogeneous
media [15-17]. These coefficients are coupling terms
related to the nonsymmetry of the unit cell, and although
they are null for symmetric periodic materials [18], the
nonreciprocity induced by the special modulation of the
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materials considered here makes them different than zero.
These terms are relevant especially in the dynamic or
transient regime; however, in the work we are more
interested in the nonreciprocal properties of the material
in the nearly stationary regime, for which a further
discussion about these terms is beyond the objective of
the present work.

The responsibility of the nonreciprocal properties of the
material in the stationary regime is the convective term
CO,T appearing in Eq. (4). It is interesting the relationship
between the convective term C and the effective mass
density p*. It could be thought that, since v, is constant
through the material, the effective convective term in the
homogenized version of Eq. (2) would be simply vyp*. The
consequence of this property would be that, when returning
to the reference frame at rest, the convective term would
disappear and then we would recover the diffusion equation
with constant coefficients (plus the Willis terms). However,
as it is demonstrated in the Supplemental Material [13], the
effective convective term does not satisfy this condition,
since although the variation of vyp is the same as of p, they
appear multiplying a different operator in the equation, the
temporal derivative, and the spatial derivate, so that their
role is completely different in the equation and, therefore,
in the frame at rest we find that the diffusion equation (1)
has become the diffusion-convection equation (4), which is
known to be nonreciprocal due to the convective term C.

Therefore, the spatiotemporally modulated material
behaves, in the homogenization limit, as a homogeneous
material in which a convective term appears, so that the
diffusion of heat will have nonreciprocal properties. It must
be pointed out that the convective term is not induced by
any transport of matter, as for sound propagation in moving
fluids and similar processes, but it is induced by means of
some external stimulus that modulates the properties of the
material in a wavelike fashion, so that we can have not only
a solid material with an internal effective convection, but
we can have a finite structure with convection without the
need of letting the flow of matter leave the structure.

For the analytical and numerical examples we propose a
sinusoidal modulation of the form

2
o(x — vot) = 0y (1 TA, cosg (x— W)), (5a)

2
p(x —vyt) = py (1 +4, cosgﬂ (x — vot)>, (5b)

where the mass density and conductivity changes periodi-
cally from p;, = po(1 = A,) to p, = po(1 + 4,) and from
o, =0o(l —A,) to o, =0y(1+A,), respectively. The
effective parameters for this modulation can be approxi-
mated by [see Egs. (25) in the Supplemental Material [13]]

1 A2
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where I = vydpy/270.

Equations (6) show that the effective conductivity and
mass density are both even functions of I, which means
that reversing the direction of the modulation has no effect
on their values. Contrarily, both S and C are odd functions,
which is obvious since these parameters are the respon-
sibility of the nonreciprocal properties of the material.
When there is no traveling modulation (I' = 0), both S and
C are zero, the mass density is just the average mass density
p* = po and effective conductivity ¢* = 6o(1 — A2/2), so
that we recover reciprocity as expected. Interestingly, when
v9 — Foo the nonreciprocal properties of the material also
disappear, since S and C both tend to zero, and now the
effective mass density is p* = po(1 — A2/2) and the
effective conductivity is ¢* = o(. In this case the oscil-
lations of the material’s properties are so fast that the spatial
variation almost disappears; therefore, we can see an
averaged material in time, which in turn means that the
nonreciprocal properties disappear. It is interesting to note
how the expressions for the effective parameters exchange
their roles in the limiting situation I' = o0 or I' = 0, due
to the exchange of them in front of the space and time
derivatives in the diffusion equation. This simple analysis,
which will be verified later, shows that the larger “non-
reciprocity” is not obtained with the larger modulation
velocity, but that there is an optimum velocity for the design
of nonreciprocal materials.

Another interesting feature of Egs. (6) is that we need a
modulation of both the mass density and the thermal
conductivity to have nonreciprocity. This is indeed a
general result, as shown in the Supplemental Material
[13], where the effective convective term is shown to be

C = Z P-¢G'x6606G., (7)
G'.G#0

where the summation has to be performed for all the
reciprocal lattice points G = 2zm/d, with m being an
integer. y /¢ 1s an interaction matrix, and ps and o are the
Fourier components of the functions p(n) and o(n),
respectively. Given that in the above equation the summa-
tion excludes the term G = 0, it will be zero unless we have
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at least one pair (pg, o) for G # 0 different than zero; that
is, we need a simultaneous variation of both ¢ and p.

This result shows that the origin of the convective term in
the effective material is due to a coupling between the
variation of the mass density and the conductivity, and
enforces its analogy with the Willis term and chirality in
electromagnetism.

In the stationary regime the macroscopic temperature
(T) is independent of time, and Eq. (4) reduces to

L0 _o(T)
o2 T " ox (8)

whose general solution is given by

(T) = A + Be™, 9)

with @ = C/c* being the convection-diffusion parameter
that quantifies the nonreciprocity of the material, as will be
demonstrated later on. For the harmonic perturbation
studied in the present example, we can approximate a by
ax 2—7[ A A _ .

d 714217

Figure 2 shows the dependence of this parameter as a
function 2zI". In these examples p,/p, =0.5 and
c,/0, =0,0.01,0.1,0.5, and 1, as indicated in the legends
of the plot. We see that there is an optimum value of I" for
which we obtain the maximum value of « and, as before for
C, when I — o0, a tends to zero and the material becomes
reciprocal.

Numerical simulations by the finite element method
(FEM) in time domain have been performed. We have
assumed a one-dimensional domain (a solid bar, for
instance) of length L = 104, in which the initial temper-
ature is set to 0. In the “forward” (F) configuration, the
temperature at the extreme x = L is fixed to 0 and, for
t >0, the temperature at x =0 is set to 7. In the
“backward” configuration we have reversed the temper-
atures, so that at x = 0 the temperature is fixed to 0 and for

(10)

1.5 T T T

1

0.5

a/d
o

FIG. 2. Effective convection-diffusion coefficient as a function
of the nondimensional modulation velocity I

t > 0 the temperature is fixed to Ty at x = L. We have
selected the same parameters for p, and p, as in the
previous calculations, and the value of ¢, = 0.01¢,,. The
simulations have been performed for 2zI" = 0, 0.3, 1, and
10, whose corresponding values for a/d are 0, 0.52, 0.87,
and 0.32, respectively. According to Eq. (9) and the
previously defined boundary conditions, the temperature
distribution in the bar in the stationary regime for the
forward and backward configuration is, respectively,

eaL — ™

(Tr) :To—e"L—l . (11a)
e™ —1

(Tg) = TOeaLi_l’ (11b)

showing a non-ymmetric profile in the forward and back-
ward configurations, as expected. The total heat flux is
composed of the diffusive plus the convective flux, so that
D = —0"0,(T) + C(T), and it is clearly different in the
forward and backward configurations, since we have ®p =
CToet /(1 — ) and @y = —CT,/(1 — e°). Indeed, the
ratio |@p/®p| = e ~0 is the definition of a nearly
perfect thermal diode, showing a very promising applica-
tion of these materials.

Figure 3 shows the numerical simulations performed
by the commercial software COMSOL Multiphysics [19] (blue

T/Ty

T/Ty

x/d

FIG. 3. Temperature distribution of the spatiotemporally modu-
lated bar in the forward (upper panel) and backward (lower panel)
configurations.
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dots) at t = t; = 300dp,,/ 5, together with the correspond-
ing analytical solution given by Eq. (11). A space element of
size Ax = 0.1d and a time step of At = 0.01dp, /0, was
enough to ensure a good convergence, as it is demonstrated
due to the perfect agreement with the numerical and
analytical solution, although an additional modulation
appears in the numerical simulation. This modulation is
due to the fact that in the homogenized model we ignore the
modulation function ¢(n) = ¢(x — vyt), which is obviously
included in the numerical solution. Since the time is fixed to
t =ty in Fig. 3, only the spatial variation of ¢ is detected,
however, the transient period and the time evolution of the
system can be seen in the Supplemental Material [13],
movies temperatureF.gif and temperatureB.gif, where the
effect of ¢(n) is more evident, although the relevant
information is given by the analytical model shown in
Eq. (11). Itis obvious the diodelike behavior of the material,
whose nonreciprocal nature is manifested not only in the
static but also in the dynamic regime. The accuracy of the
analytical solution provides also a very powerful tool to
design more advanced devices based on these materials.
In summary, we have presented a structured solid
material with nonreciprocal effective thermal properties,
where the mechanism of nonreciprocity is due to an
artificial convective term that appears in its effective
behavior. The structured material consists of a modulated
solid in which the local thermal properties depend not only
on the position, but also on time, in such a way that these
parameters have a wavelike behavior. It is shown that in the
nearly stationary regime the material presents nonreciproc-
ity in the diffusion of heat, and it is shown how such a
material can work as a thermal diode. Several properties of
the effective parameters are deduced and an effective
medium theory is developed. The expression derived for
the convective term shows that it requires a modulation in
both the mass density and thermal conductivity, since this
term appears as a coupling between the relative variations
of both parameters. Coupling terms equivalent to the so-
called Willis terms in elasticity or chiral coefficients in
electromagnetism also appear, although their contribution
is relevant only in the transitory or time-dependent regime.
It is remarkable that the nonreciprocal thermal effect
presented here is the result of the artificial internal structure
of the materials, which makes that effect scalable and

therefore useful in a wide variety of thermal problems and
scales where the heat transport is dominated by diffusion.
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