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2CNR-Nanotec—Unità di Cosenza, Ponte P. Bucci, cubo 31C, 87036 Rende, Italy
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Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms,
including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets,
and stochastic heating. It is now understood that the presence of localized coherent structures enhances the
dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the
relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented
so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-
resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering
to derive a spectral energy flux term which defines, in any point of the computational domain, the signed
flux of spectral energy across a given wave number. The characterization of coherent structures is
performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation
between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship
between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with
respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade
induced by topological structures in the magnetic field. Taking into account the low space-filling factor of
coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy
transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of
the energy transfer is localized in only 25% of space.
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Introduction.—Plasma turbulence has been the subject of
intensive investigations because of its importance in space,
astrophysical, and laboratory applications [1–4]. Amongst
the several aspects that characterize plasma turbulence,
such as the power law exponent, spectral anisotropy,
intermittency, and Alfvénicity [5–8], much attention has
recently been devoted to the role of coherent structures and
their connection to turbulent dissipation and localized
particle heating [9–15]. For the purpose of the present
work, by coherent structures we indicate the intermittent,
spatially localized structures generated by the turbulent
cascade, such as thin current sheets and magnetic eddies.
In particular, in the context of solar wind turbulence at

kinetic scale [16], a somewhat dichotomous view has
emerged in the community where turbulent energy dis-
sipation is ascribed either to linear damping of kinetic
waves—oblique propagating low-frequency Kinetic Alfvén
Waves [17–22] or quasiparallel high frequency whistler
waves [23–27]—or to spatially localized structures, such
as thin current sheets and magnetic reconnection sites
[28–32]. Of course, both mechanisms can simultaneously
be at work [33–38]; however, their relative importance has

not yet been conclusively determined. Several works have
recently focused on studying the channels for energy
transfer either in fluid or kinetic models [39–44] and in
understanding the relation between dissipation enhance-
ment and localized structures [38,45,46]. It is now under-
stood, at a qualitative level, that a certain relationship
between coherent structures and energy dissipation exists,
but a clear assessment of such a relationship is still missing.
In this Letter, we quantitatively establish the correlation

between coherent structures and spectral energy transfer,
analyzing a two dimensional two-fluid simulation of
decaying turbulence. The spectral energy transfer is com-
puted using a space-filter approach, a technique commonly
used in large eddy simulations (LES), although with a
different scope (i.e., for subgrid modeling) [47–51]. With
the exception of a recent paper by Yang et al. [52], the
space-filter approach has so far been overlooked in the
plasma turbulence community. Reference [52] has briefly
commented on the inhomogeneity of the energy flux, and
the “coincidence between coherent structures and the sites
of enhanced energy transfer,” without however providing a
quantitative measure of such a correlation. In short, one can
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apply a filter to all variables of interest at a given wave-
length and derive an equation for the conservation of
filtered energy (i.e., the energy written in terms of filtered
quantities), in a conservative form. Such an equation
contains a source or sink term, which is of course not
present in the original equation for the conservation of
(unfiltered) energy. This new term has the physical mean-
ing of spectral flux of energy across the wavelength where
the filtering has been computed. The advantage of this
approach, compared to the more standard global spectral
decomposition, is that the spectral energy flux so derived is
a quantity that is defined in the spatial domain. Its sign
defines the direction of the energy cascade (towards smaller
or larger scales) at a given position in space. Hence, it is
straightforward to study its correlation with topological
features such as spatial coherent structures. In this Letter,
we employ two-dimensional wavelets to derive a quanti-
tative measure of coherent structures. We will show that the
spectral energy flux and the amplitude of the wavelet
transformation are well correlated, indicating a larger
transfer of energy (in Fourier space) in regions with strong
coherent structures. Finally, by conditioning the spectral
energy flux to given thresholds of wavelet amplitude, for
the first time, we are able to quantitatively assess the
inhomogeneity of the turbulence cascade induced by
topological structures in the magnetic field. In particular,
taking into account the low filling-factor of coherent
structures (i.e., they cover a small portion of space), it
emerges that 80% of the spectral energy transfer (both in
the direct and inverse cascade directions) is localized in
only about 50% of space, 50% of the energy transfer is
localized in 25% of space, and so on—a typical feature of
intermittent turbulence [53].
Methodology.—Our approach is applied to a fully

turbulent plasma in the two-fluids regime, i.e., the Hall
magnetohydrodynamic (MHD) regime, including the elec-
tron pressure gradient and electron inertia. The latter is a
key ingredient to let the current sheets reconnect on a fast
time scale without dissipating the larger scales (as it would
using a resistivity coefficient). The two-fluids equations are
normalized to ion characteristic quantities and can be listed
as the continuity and motion equation, an adiabatic closure
for the pressures, Faraday’s law (neglecting the displace-
ment current), Ohm’s law including the Hall term, the
electron pressure and the electron inertia to calculate the
electric field (see [54]). We take the mass ratio
me=mi ¼ 100. These equations are integrated in a 2D
space domain (x, y) of dimension Lx ¼ Ly ¼ 200 × 2π
and using Nx ¼ Ny ¼ 4096 grid points with periodic
boundary conditions. The corresponding spectrum ranges
in the interval ½0.005 ≤ k ≤ 10� where kmax ≃ kde (where de
is the electron inertial length). We impose an initial uniform
out-of-plane magnetic field B0 ¼ 1. The initial magnetic
perturbation is chosen as in [55]: we excite all couples
(kx, ky) laying in the semicircle k ≤ 0.015, where

k ¼ ½k2x þ k2y�1=2, using random phases, and a typical mean
amplitude ϵ ≃ 0.4. No initial perturbation is applied on the
velocity field. The typical eddy-turnover time turns out to
be of the order of τL ∼ L=uL ∼ 500, much less than the
final time of the simulation, τfin ¼ 3500, thus allowing us to
obtain a fully developed regime. Indeed, the magnetic
energy spectrum shows for 0.05 ≤ k ≤ 1 a well-developed
inertial range with spectral exponent α ¼ 5=3.
Figure 1 shows the snapshots of the out-of-plane

magnetic field Bz (top-left) and current density Jz (top-
right), at the time when the analysis is performed and the
turbulence is well-developed. One can notice the typical
formation of thin current sheets and coherent structures.
The space-filter approach.—As it is well known, the

Hall-MHDmodel conserves energy. Here, we seek to derive
an equation for the filtered energy. Let us consider a vector
field Uðx; tÞ. We define the filtered field Ũðx; tÞ via convo-
lution with a filter G as Ũðx; tÞ ¼ R

ΩGðx − ξÞUðξ; tÞdξ
with Ω defining the entire domain.
The convolution can be interpreted as a low pass-filter

that decomposes the field into high-frequency and low-
frequency parts. In this work, we employ the so-called
Butterworth filter that, in Fourier space, is Gk ¼
1=½1þ ðk=kcutÞ8�, where kcut is the wave number at which
the filtering takes place. Let us also introduce the Favre
filter [56]: bΦ ¼ ˜ρΦ=ρ̃, with ρ the charge density.
Obviously, the filtering of the product of two quantities
is not equal to the product of the two filtered quantities

FIG. 1. Top: Snapshots of Bz (left) and Jz (right). Bottom:
Spectral energy flux Sl for l ¼ 5 (left) and l ¼ 10 (right), rescaled
to the range ½−1; 1�. x, y and l are normalized to the ion inertial
length.
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(i.e., gUU≠eUeU). However, one can introduce so-called
subgrid residuals, that are simply defined as the difference
between the two. For instance, defining T VV¼eρcVV−eρbV bV,
one can obtain the filtered momentum equation
∂eρ bV =∂tþ ∇ · ðeρ bV bVÞ ¼ −∇ · ðeΠþ T VVÞ, and the corre-
sponding kinetic energy equation: ∂bEU=∂t ¼ −∇ · ðbEU

bVÞ−
∇ · ðeΠþ T VVÞ · bV, where bEU ¼ 1

2
eρ bV ·bV ¼ 1

2
eρðbVÞ2. The

latter differs from the standard (unfiltered) kinetic energy
equation by virtue of the subgrid term. By using a combi-
nation of filtered quantities, the same procedure can be
applied to derive an equation for the total filtered energy bE in
a conservative form (the mathematical derivation can be
found in the Supplemental Material [57] that includes
Ref. [58]):

∂bE
∂t þ ∇ ·

�bE × bBþ cEU
bVþ dEΠ;iV þ EΠ;e

�bV −
J
ρ̃

�

þ ðfΠ0
i þ fΠ1

i Þ · bV þ fΠ0
e ·

�bV −
bJ
ρ̃

��
¼ Sl

The right-hand side term represents the source or sink
term that determines cross-scale energy transfer, with units
of energy per time:

Sl ¼ −ð∇ · T VVÞ · bV þ ðT V×B þ T J×BÞ · bJþ
− ðT Π0

i∇V
þ T Π1

i∇V þ T Π0
e∇V þ T ΠeJÞ; ð1Þ

with the following definitions

T VV ¼ eρ cVV −eρ bV bV; ð2Þ

T V×B ¼ dV ×B − bV × bB; ð3Þ

T J×B ¼ 1eρ ð gJ × B − bJ × bBÞ; ð4Þ

T Πn
s∇V ¼ dΠn

s;kj∂jVk − gΠn
s;kj∂j

cVk; ð5Þ

T ΠeJ ¼
d

Π0
e;kj∂j

Jk
ρ
− gΠ0

e;kj∂j

bJk
ρ̃
: ð6Þ

Equation (2) derives from the kinetic energy equation,
Eqs. (3)–(4) derive from the filtering of the Hall term in
Ohm’s law, and Eqs. (5)–(6) derive from filtering the
pressure equations. The subscript l indicates the filter
wavelength, that is l ¼ 2π=kcut. The strength of the
space-filter approach is that Sl is defined on the physical
domain (x, y): it is a scalar field that indicates, in each point
of the domain, how much energy is transferred at a given
wavelength l, and whose sign indicates the direction of the
transfer (i.e., towards smaller or larger scales). Contrary to
the standard LES methodology, our subgrid quantities, and
hence the term Sl, can be directly calculated from

simulation results. Two examples of Sl for l ¼ 5 and l ¼
10 are shown in the bottom panels of Fig. 1. Here, values
are normalized to the maximum value in the domain so that
the ranges are rescaled to ½−1; 1�. One can immediately
identify a correlation of the spectral energy transfer with the
coherent structures present in Bz and Jz in the top panels,
similar to the results reported in [52]. The precise quanti-
fication of such a correlation is the objective of this work.
Coherent structures identification via wavelets.—In

turbulent flows, intermittency is related to the inhomoge-
neity of the energy cascade, which results in the appearance
of small-scale energetic structures [53]. The most common
way to identify such structures in a d-dimensional field is
by using the amplitude of the scale-dependent wavelet
coefficients WσðrÞ, where σ is a (d-dimensional) scale
index and r the generic d-dimensional coordinate [59,60].
For example, in the solar wind, current sheets, magnetic
discontinuities, and vorticity structures are commonly
observed at small scales [61,62]. Studies of solar wind
measurements and numerical simulations have shown that
intense small-scale current sheets are statistically associated
with enhanced plasma heating and other forms of ions and
electron energization [12,63–65]. The possible processes
leading to the conversion of the energy associated with
turbulent fluctuations into particle energization may
include magnetic reconnection, plasma instabilities, and
the enhancement of collisions, and they are still not
understood [66]. In this work we use the isotropic
Mexican hat wavelet transformation applied to the mag-
netic field to obtain the coefficients Wσðx; yÞ, with
σx ¼ σy ¼ σ. The popular Mexican hat wavelet has suc-
cessfully been employed for spatial structure identification
in turbulent flows (e.g., [67]). We first compute the wavelet
transformation on each component of the magnetic field,
and then we define the total amplitude Wσ as the square
root of the sum of the three components squared. An
example of the real-valued amplitude of the wavelet
transformation at the scale σ ¼ 4 (in units of ion inertial
lengths) is shown in Fig. 2 (left). The ability of the two-
dimensional wavelet to capture coherent structures is

FIG. 2. Left: Wavelet amplitude Wσ for length scale σ ¼ 4.
Right: Wavelet amplitude integrated over σ. In both cases the
amplitude is rescaled in the range [0, 1]. x, y, and σ are
normalized to the ion inertial length.
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evident. The amplitude Wσ, here normalized between 0
and 1, is modulated by the intensity (gradient) of a spatial
structure. In principle, one could easily study the correla-
tion between Sl and Wσ , as function of both l and σ.
However, the dependence on σ adds an unnecessary layer
of complexity that we wish to simplify. Hence, we are
interested in a quantity that does not depend on σ, still
retaining the ability of quantify coherent structures. A
simple choice is to integrate Wσ over all of the values of σ.
Numerically, this translates into calculating Wσ for a
sufficiently large number of σ and to carefully check that
the integral does not depend on the choice of the range and
the discretization of σ. The result, which we simply callW,
is shown in the right panel of Fig. 2.
Results.—Once we are equipped with W, that quantifies

the location and intensity of intermittent structures, and
with Sl, that defines the cross-scale spectral energy transfer
at wavelength l, it is straightforward to calculate the
correlations between these two quantities and to address
the question “how is the spectral energy transfer localized
in space?” The left panel of Fig. 3 shows an example of a
color map of the joint probability density function of the
quantities log10 jSlj and log10W, for l ¼ 5. A strong
correlation between the two quantities emerges. The right
panel shows the Spearman correlation coefficient between
W and Sl in black and between J ·E and Sl in red, as a
function of the scale l. J ·E is the (reversible) work done by
the field on the particles, and it is a quantity that necessarily
contains nonreversible turbulent dissipation; hence, it is
often used as a proxy for dissipation [11,68–70]. Of course,
a word of caution is needed here when discussing the
concept of dissipation in relation to Hall-MHD simulations
that do not account for all of the physics needed to properly
model turbulent heating. Even though this work focuses on
the cross-scale energy transfer, and its correlation with
spatially localized structures, the underlying implication is
that an increase in large to small scales energy transfer is
necessary for dissipation and heating, since they do not
occur at large scales. The striking similarity between red
and black curves in Fig. 3 supports this intuitive picture and

suggests that coherent structures, energy transfer, and
dissipation are all correlated to a certain extent.
Furthermore, the observed correlation is larger for J · E
than for the localized structures, suggesting that part of the
energy conversion (as estimated through J · E) is related to
the magnitude of the energy flux but not directly to the
amplitude of the magnetic gradient. This is in agreement
with recent findings in solar wind turbulence [71].
Obviously, coherent structures have a low space-filling

factor, meaning that they are localized in a small portion of
physical space, as was already evident from Figs. 1 and 2.
The space-filling factor can be defined by conditioning the
cumulative distribution function (CDF) of W on a given
threshold. The CDF is shown in the left panel of Fig. 4 as a
red curve (where W has been normalized, as in Fig. 2 in
the range [0,1]). For instance, only 20% of space (i.e.,
numbers of grid points in the computational domain) has
W > 0.2 and only 10% has W > 0.3. Figure 4 also shows
several black lines, which denote the percentage of gross
energy flux transfer at a given scale, conditioned on a
certain threshold in W. This is formally defined asP

ijSlðxiÞjH(wt −WðxiÞ)=
P

ijSlðxiÞj, where H is the
Heaviside step function, and wt is a given threshold for
W. Notice that with this choice, we consider the total
amount of spectral energy transfer, i.e., the sum of its
absolute value. As it is typical in turbulence, much of the
cross-scale transfer cancels out that is

P jSlj ≫
P

Sl. The
different black curves in the left panel of Fig. 4 are derived
for different values of wavelength l in Sl, ranging from 1.5
to 10. Two interesting features emerge. First, the distribu-
tion of Sl conditioned onW does not strongly depend on l.
That is, the black curves nicely align. Second, there is a
vertical gap between the red and black curves, denoting an
inhomogeneity in how the spectral energy transfer is
localized in space. Such inhomogeneity is not merely
due to the inhomogeneity of the coherent structures

FIG. 3. Left: A color map of the joint distribution of the
quantities log10 jSlj and log10 W, for l ¼ 5. Right: Spearman
correlation coefficient between Sl andW (J ·E) in black (red), as
a function of l.
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FIG. 4. Left: the red curve represents the cumulative distribu-
tion function (cdf) of the integrated wavelet amplitudeW over the
whole computational domain. The black lines show the percent-
age of jSlj conditioned to a given threshold in W, for different
values of l. Right: each black line represents the percentage of
space (vertical axis) in which a given percentage of total jSlj is
localized. Different curves are for different values of l, ranging
from 1.5 to 10.

PHYSICAL REVIEW LETTERS 120, 125101 (2018)

125101-4



(if that was the case, red and black lines would align). In
other words, there is a preference of transferring spectral
energy in the proximity of coherent structures (defined as
regions with large values of W). In order to quantify this
preference, we plot in the right panel of Fig. 4 the
(compliment to 100%) values of the black lines (in
horizontal axis) against the corresponding (compliment
to 100%) values of the red line (in vertical axes), for a given
threshold in W. The interpretation is the following: the
curves in Fig. 4 (right panel, different curves for different
values of l) represent the percentage of total jSlj active in a
given percentage of space. For instance, 20% of the spectral
transfer is localized in 10% of space, 40% in 20% of space,
and 80% in between 50% and 60% of space. This is the
most important result of this Letter, as it quantifies, for the
first time, the localization of spectral energy transfer (and
possibly of turbulent dissipation) around coherent struc-
tures in magnetized plasma.
Conclusions.—A pressing topic in magnetized plasma

turbulence at small scales is the relative importance
played by homogeneous linear wave damping and local-
ized dissipation due to spatial coherent structures. In this
Letter, we have quantified for the first time how much a
cross-scale spectral energy transfer takes place in a given
portion of space and how this correlates with the
presence of coherent structures. We have used the results
of a two-dimensional Hall-MHD two-fluid plasma turbu-
lence simulation, and applied a space-filter approach to
calculate, in any point of the computational domain, the
spectral energy transfer Sl active at wavelength l. We
have used two-dimensional isotropic Mexican hat wave-
lets to identify coherent structures. A clear correlation
between Sl and the integrated wavelet amplitude W
emerges, with the largest correlation for k ¼ 2π=l ∼ 1.
By studying the cumulative distribution function of W
and by conditioning Sl on given values of W, we have
demonstrated that energy transfer is indeed localized in
the presence of strong coherent structures, which, hence,
play a larger role in turbulent dissipation than mecha-
nisms mediated by linear wave damping. However, this is
not an overwhelming imbalance, but rather close to a
factor of 2: 20% of jSlj is localized in about 10% of
space, 50% in 25% of space, and 80% between 50% and
60% of space. This is also supported by the weak
increase of the correlation when the proxy for energy
conversion J ·E is used instead of W, suggesting that
part of the energy conversion is still unrelated to or not
colocated with the intermittent structures. Interestingly
the distribution of jSlj is fairly independent from the
filtering wavelength l. The approach employed in this
Letter will be extended to kinetic simulations in future
works. In this way we hope to be able to shade light to
the relative importance of different kinetic mechanisms
for turbulence dissipation and their interplay with mag-
netic reconnection and current sheets at subion scales.
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