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A plastic response due to dislocation activity under intense electric fields is proposed as a source of
breakdown. A model is formulated based on stochastic multiplication and arrest under the stress generated
by the field. A critical transition in the dislocation population is suggested as the cause of protrusion
formation leading to subsequent arcing. The model is studied using Monte Carlo simulations and
theoretical analysis, yielding a simplified dependence of the breakdown rates on the electric field. These
agree with experimental observations of field and temperature breakdown dependencies.
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Various modern applications rely on maintaining
high electric fields in a vacuum between metallic electrodes
[1–4]. In such systems, arcing of current through the
vacuum, which leads to a field breakdown (BD), is a major
failure mechanism. Even when plasma formation is
required [5], arcing nucleation and the mechanism leading
up to it play a critical role in system design. Therefore,
arcing nucleation and vacuum BD are subjects of interest in
application and theory.
In most cases, plasma, created by particles emitted from

the cathode, leads to arcing [2,6,7]. While the properties of
arcing in relation to the interelectrode environment, as well
as the development of the cathode and anode surface states,
have been previously studied and remain an active and
important area of research, the processes in the cathode
leading up to BD nucleation are not yet understood [2,4]. It
has been postulated that plastic damage to the cathode
surface plays a critical role in the nucleation process. Based
on this assumption, it was suggested that a BD can be
related to the mobility of defects within the solid [8], and
thus the mean time to BD τ would show an exponential
dependence on the stress σ. Assuming that the leading
contribution to σ is due to Maxwell stress σ ¼ ϵ0E2=2,
where E is the applied field, led to a ln τ ∼ E2 relation. This
showed a good fit to a compilation of experimental data on
the BD rate (BDR ∼ 1=τ) versus E in metals at room
temperature [10].
Understanding the observed limit is of general interest

and is important for the design of high gradient applica-
tions, specifically in the proposed new CLIC project in
CERN [1,4,11]. This led to a concentrated effort to identify
the mechanism by which BDs are driven [12,13]. The basic
assumption was that an applied field may cause a yield at
the surface, which would lead to the formation of a
localized protrusion. This protrusion would then enhance
the electric current on the surface, leading to heating and
thus to plasma formation and arc nucleation. However,

molecular dynamics and finite element simulations showed
these processes occurring only at E≳ 1 GV=m [12,13],
significantly more than the observed BD fields, in the range
of 100–200 MV=m [4,11].
It is well established that plasticity in metals close to the

yield is controlled by stochastic dislocation reactions [14].
Individual crystals, too, deform via a sequence of discrete
slip events, as was demonstrated in the compression of
micropillars [15]. The probability distribution of these
events was measured [16] and reproduced by discrete
dislocation dynamics simulations [17], as well as mean-
field models [18]. Such systems demonstrate universal
critical behavior characteristics of a self-organized critical
state controlled by a minimally stable cluster, where in this
case the cluster is a pinned dislocation arrangement [19,20].
A model reproducing this type of critical behavior utilizes
terms describing the kinetics of the mobile dislocation
density ρ, with nucleation at stress concentration sites on
free surfaces, _ρþ, as well as their depletion, _ρ− [21]. While
not fully descriptive of the complex dislocation system, this
model successfully describes the nature and size depend-
ence of the observed stress-strain curves [22,23].
In a similar fashion, it has been shown, using a stochastic

model, that the correlated motion of dislocations can lead to
micron-sized surface protrusions, when persistent slip
bands, caused by cyclic stress, break through the surface
[24,25]. This was observed using SEM in fatigued samples
exposed to high-cyclic stresses [26,27]. Samples exposed
to strong electric fields, however, do not show such
prominent features [4].
Here we explore the possibility that the mechanism

leading to arc nucleation is a critical transition in the mobile
dislocation population density close to the surface. We
propose that, in a cathode subjected to an external electric
field, the dislocation density typically fluctuates around a
stable level, which depends on E. However, at any point in
time, there is a finite probability that the density will reach a
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critical point, beyond which it will increase deterministi-
cally. Arc nucleation will then follow from the surface
response to the sudden localized increase in the surface
dislocation density, through a mechanism which we do not
attempt to address at this stage.
To explore this option, we employ a zero-dimensional

mean-field model to describe the kinetics of the creation
and depletion of mobile dislocations in a single slip plane,
neglecting interactions between slip planes and the spatial
variation of the mobile dislocation density within one
plane. In this model, mobile dislocations nucleate at
existing sources, and their depletion is due to collisions
with obstacles. We formulate the problem in terms of a
birth-death master equation [28] for the mobile dislocation
population. This formalism is used to calculate an explicit
analytical expression for the BDR in one slip plane as a
function of E, which agrees well with kinetic Monte Carlo
(KMC) simulations. The resulting model is unique in that,
for the first time, it treats a BD in metals as a critical
transition, due to the stochastic evolution of dislocations
under an external field. In contrast with linear evolution
models [10,12,13], our model predicts an eventual BD
without requiring observable pre-BD surface features,
whose absence in the microscopy of post-BD samples
has posed a long-standing problem [4].
We calibrate the model for oxygen-free high-conduc-

tivity Cu, due to the availability of experimental data, as it
is used in the CERN CLIC Collaboration, developing the
next-generation linear collider accelerators. The physical
parameters that are unknown are found by fitting the results
generated by the model to experimental observations,
including the temperature and E dependence of the
BDR. Following this calibration, the model yields a
quantitative agreement with the observed experimental
BDRs, without making additional assumptions about the
physical characteristics of the system, such as postulating
the existence of specific surface or subsurface features.
Deterministic description.—A simplified kinetic model

is based on the average creation and depletion rates _ρþ and
_ρ−, respectively [21]. For these, we assume that the kinetics
are described within slip planes limited by dislocation cells
on the order of 10 μm. Dislocations nucleate at sources,
whose density depends on the number of mobile disloca-
tions, at a rate depending on E. They are depleted by
interactions with other mobile dislocations and existing
defects. Thus, the deterministic dynamics of the mobile
dislocation density are given by

_ρ¼ _ρþ− _ρ−; _ρþ¼B1ðρþcÞσ2eασ; _ρ−¼b2σρðρþcÞ;
ð1Þ

with σ ¼ A1 þ a2ρ. The constants A1, a2, B1, b2, c, and α
depend on the system parameters and are independent of E,
except for A1 ∼ E2. The derivation of these functional
forms and the relation of the effective constants to the
appropriate physical parameters is described in the

Supplemental Material; see also Fig. S1 [29].
Henceforth, all analytical and numerical results are pre-
sented for fitted parameters (see below).
Below a critical field Ec (see below), the equation _ρ ¼ 0

yields two solutions: ρ� and ρc, where ρ� < ρc. For
ρ� < ρ < ρc, we have _ρ− > _ρþ, and the dislocation density
deterministically decreases back to ρ�. Therefore, ρ� is an
attracting fixed point of Eq. (1), while ρc is a repelling
point. That is, if ρ is larger than ρc, it will increase
indefinitely, leading to a subsequent BD.
Sufficiently below Ec, where ρ� ≪ A1=a2 ≪ ρc, we can

find analytical expressions for ρ� and ρc, which yield ρ� ¼
ðB1A1=b2ÞeαA1 and ρc ¼ ðαa2Þ−1 ln½b2=ðB1a2Þ�.
The values of _ρþ and _ρ− approach each other as E

increases, as shown in Fig. 1. At E ¼ Ec, ρ� ¼ ρc, and thus
for E ≥ Ec the system progresses deterministically to a BD.
Notably, for E < Ec, reaching ρc is a fluctuation-driven
stochastic event, leading to an E-dependent BDR.
Stochastic model.—To incorporate fluctuations, we

model the evolution of the mobile dislocation density ρ
as a birth-death Markov process [28]. The rates _ρþ and _ρ−
represent the probability per unit time that ρwill increase or
decrease, respectively, by Δρ ¼ 0.1 μm−1, corresponding
to one dislocation per cell. For one single slip plane, we
define n ¼ ρ=Δρ as the instantaneous number of mobile
dislocations per cell. By defining A2 ¼ a2ncΔρ,
B2 ¼ b2ncΔρ, and C ¼ c=ðncΔρÞ, where nc ¼ ρc=Δρ,
we find that the microscopic birth and death rates as a
function of n are, respectively,

λn¼B1ðnþncCÞσ2eασ; μn¼ðB2n=ncÞðnþncCÞσ; ð2Þ

with σðnÞ ¼ A1 þ A2n=nc [40]. The stochastic dynamics
are governed by the master equation

∂PnðtÞ
∂t ¼ λn−1Pn−1ðtÞ þ μnþ1Pnþ1ðtÞ − ðλn þ μnÞPnðtÞ;

ð3Þ

FIG. 1. Fixed points of the dynamical equations for ρ, attracting
(ρ�) and repelling (ρc), as functions of E, demonstrating the
existence of a bifurcation point.
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describing the evolution of the probability PnðtÞ of finding
n mobile dislocations per cell at time t [28].
In order to find the BDR, we write a recursive equation

for Tn, the mean time it takes to reach BD starting from n
mobile dislocations [28,42]:

Tn ¼
λn

λn þ μn
Tnþ1 þ

μn
λn þ μn

Tn−1 þ
1

λn þ μn
; ð4Þ

where ðλn þ μnÞ−1 is the average time it takes to jump from
n to n� 1. We solve this equation with an absorbing
boundary at nc and a reflecting wall at n ¼ 0, such that
Tnc ¼ 0 and T 0

nðn ¼ 0Þ ¼ 0. Starting from the vicinity of
n ¼ 0, τ is given by [43]

τ ¼ Tn ¼
Xnc

i¼n

ϕi

�Xi

j¼0

1

λjϕj

�
; ð5Þ

with ϕn ¼
Q

n
m¼1 μm=λm [28].

In the rest of the Letter, we focus on the regime where the
critical number of mobile dislocations, needed for a BD,
satisfies nc ≫ 1. In this regime, the expression for τ can be
simplified. Assuming a priori that τ is exponentially large
in nc, we can employ the metastability ansatz PnðtÞ ≃
πne−t=τ [44], where πn is the quasistationary distribution
(QSD) [41,45–47]. Substituting this into Eq. (3) and
neglecting the exponentially small term proportional to
1=τ, we have λn−1πn−1 þ μnþ1πnþ1 − ðλn þ μnÞπn ¼ 0,
whose solution, for n ≤ nc [48], satisfies [28]

πn ¼ π0
Yn

m¼1

λm−1

μm
: ð6Þ

This solution is shown in Fig. 2(a), where π0 is found via
normalization [28]. Using Eq. (3) for n ¼ nc þ 1 and the
metastability ansatz, we thus have τ ≃ ðλncπncÞ−1 [41,
45–47]. Using Eqs. (2) and (6), expanding in nc ≫ 1,
and applying the Stirling approximation up to subleading
order, τ gives way to a WKB-like solution [41]

τ ¼ AencΔS; ð7Þ

where

ΔS ¼ ln
B2

A1B1

− αA1

�
1þ 1

2η

�
− ðηþ 1Þ ln

�
1þ 1

η

�
;

A ¼
ffiffiffiffiffiffi
2π

nc

s
e−αA1½1þð1=2ηÞ�

A2
1B1C

�
1þ 1

η

�
−1=2

; ð8Þ

and η ¼ A1=A2. Here ncΔS can be viewed as a barrier to a
BD [49]. Note that, in the experimentally relevant electric-
field range, we observe that

τ ∼ exp½γð1 − E=E0Þ� ð9Þ

with E0 a reference field and γ a dimensionless constant
independent of E, as demonstrated in Fig. 2(b) [50].
The analytical results were compared to a KMC simu-

lation, tracking the time evolution of n. In this simulation,
n → n� 1 changes randomly using the transition rates in
Eq. (2), with the time elapsed between changes determined
using an exponential distribution with mean ðλn þ μnÞ−1.
The numerically estimated QSD and τ agree with the
analytical solution; see Figs. 2 and S2 [29].
Parameter range.—The model includes six constants

which depend on the material properties and on specific
mechanisms that control the reactions of dislocations to the
applied field [29]. These constants depend on four
unknown parameters: (i) β, relating the stress at the
nucleation sites to E; (ii) κ, representing temperature-
independent factors affecting nucleation, such as the
nucleation attempt frequency and activation entropy;
(iii) the activation energy Ea; and (iv) the activation volume
Ω for releasing new mobile dislocations.

(a) (b)

FIG. 2. Analytical versus simulated values: (a) probability of
being in state n, at t ≪ τ, as calculated from the analytical
expression [Eq. (6)] and numerical simulation. The lines, from
bottom to top, are for E ¼ 200, 230, and 260 MV=m. The
simulation points include measurements of the probability for
n > nc, above the QSD validity regime. (b) τ normalized by
τðE0 ¼ 180 MV=mÞ as a function of E, calculated using the
metastable approximation [Eq. (7), solid line], the exact formula
[Eq. (5), dashed line], and the simulation (triangles).

(a) (b) (c)

FIG. 3. Experimental BDRs with fitted theoretical lines using
Eq. (7): (a) BDR versus E for various Cu accelerating structures
[11]. (b) BDR variation with E at room temperature (two lines on
the left) and at 45 K (line on the right) [51]. (c) BDR versus E for
various Cu accelerating structures [11,52], with E rescaled so that
all measurements are fitted with β ¼ 4.8.
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The values of these parameters can be found and
validated by a comparison to experimental measurements
of the BDR as a function of E for different structures [11],
shown in Fig. 3(a), and for one structure at both room
temperature and 45 K [51], shown in Fig. 3(b). The results
include measurements from various geometries, leading to
a significant variation in the local field at the BD site [11].
As this translates to a variation in β only, results were scaled
using β to those of a reference set [52], so that all sets
produce identical BDRs at E¼ 180 MV=m. This led to a
single normalized data set shown in Fig. 3(c). As normali-
zation was done for each structure at 300 K, results at 45 K
are presented for the rescaled E¼ 250 MV=m rather than
the measured 300 MV=m.
The parameter evaluation was done in two steps: First, a

fitting was performed for the reference set [52] and the data
from the temperature-varied structure [51], using a least
square (LSQ) fit demanding (i) consistency with the
experimental values of τðT ¼ 300 K; E ¼ 180 MV=mÞ,
τðT ¼ 45 K; E ¼ 300 MV=mÞ, and γðT ¼ 300 KÞ of
Eq. (9), (ii) consistency with theoretical estimates of
Ea ≳ 0.1, and (iii) validity of the approximation nc ≫ 1
at the corresponding temperatures and fields as in (i) [53].
Next, the rest of the data sets [11] were used to validate the
quality of the fit. Two cross sections of the resulting LSQ fit
in the parameter space (Ω, Ea, β, κ) are plotted in Fig. 4. We
find that the LSQ parameter has a minimum at
β ¼ 4.8� 0.1, κ ¼ 0.41� 0.02, Ω ¼ 5.4� 0.2 eV=GPa,
and Ea ¼ 0.08� 0.002 eV, marked on the graphs in
Fig. 4.
Our results for Ea are consistent with mobile dislocation

nucleation from preexisting sources [54], significantly
lower than the activation energy for nucleation in pristine
crystalline structures [55–57]. Furthermore, the activation
volume Ω ¼ 55b3, with b the Burgers vector, is within the
experimental range 10b3 < Ω < 124b3 [54,56].
Discussion.—The model can be consistently fitted to all

available experimental data sets, with a single free param-
eter β adjusted to account for the geometrical difference
between experimental structures. Thus, the model allows us
to make predictions for BDRs over a wide range of physical

parameters beyond those of the current measurements, as
demonstrated in Fig. 3.
According to the proposed model, BD nucleation is

preceded by a critical increase in the number of mobile
dislocations. This can create an early-warning signal for
imminent BD through the monitoring of characteristic
fluctuations [58], which includes indirect measurements
such as thermionic current emissions or direct measure-
ments of acoustic signals from increased fluctuations in the
mobile dislocation populations [59]. Furthermore, it is
expected that the standard deviation of the QSD, represent-
ing the typical fluctuations of the pre-BD mobile disloca-
tion population, will increase significantly as the BD is
approached [29].
Conversely, our model does not depend upon the

appearance of an observable surface protrusion before a
BD. This is in line with the fact that no observable sub-BD
features have been observed in metallic electrodes exposed
to a strong electric field [4]. BD sites are characterized by a
large crater created by the arc [2], obliterating any remains
of possible pre-BD features. Such features, however,
should have been found further away from the BD site
if they existed.
An understanding of the mechanism which leads to BD

nucleation can facilitate the development of a better design
of electrodes, focusing on limiting the nucleation and
mobility of dislocations, in order to lower the BDR. It is
well established that, in order to stabilize a significant field,
an electrode has to undergo conditioning via a series of
field exposures and BDs at lower fields [60]. Conditioning
includes both an initial extrinsic process (resulting from the
removal of contaminates) and a long-term intrinsic process
resulting from modifications of the electrode. In line with
our model, this comes about as a result of surface hardening
[9]. In addition, by controlling the dislocation mobility, our
model offers a direction for improving the electrode
performance.
In conclusion, we presented a model describing BD

nucleation as a stochastic process driven by the creation and
depletion of dislocations within the electrode. BD nucle-
ation in this case is a result of a critical transition in the
mobile dislocation population density. The model was
formulated using a set of parameters describing known
material properties and unknown parameters describing
interactions specific to the response of the dislocation
population to the applied field. Measurements in various
fields and temperatures were used to fit the parameters and
validate the model. This model is unique, as it does not
require pre-BD features, and offers a simple intrinsic
mechanism for a BD at fields lower than the deterministic
limit. Establishing such a model may provide opportunities
for improving the design of future electrodes, aiming to
limit the dislocation mobility, as well as offer ways to
identify pre-BD early-warning signals through the evolu-
tion of the dislocation population.

(a) (b)

FIG. 4. Fit of free model parameters: (a) LSQ parameter as
a function of Ω and Ea, with β ¼ 4.8 and κ ¼ 0.41. (b) LSQ
parameter as a function of β and κ, with Ω ¼ 5.4 eV=GPa
and Ea ¼ 0.08 eV.
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