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Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical
wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric
systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector
manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials
crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic
metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended
and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from
the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with
reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum.
This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on
general parity-time symmetry physics and further reveals the unique functionalities enabled by the
judiciously tailored unidirectional wave vectors in space.
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In 1998, Bender and Boettcher [1] extended the conven-
tional quantum mechanics into a complex domain and
proposed the concept of space-time reflection symmetry, or
parity-time (PT) symmetry, for the non-Hermitian
Hamiltonians with real spectra. PT-related theories have
since been intensively investigated with optical systems,
based on the equivalence between the Schrödinger equation
and the classical wave equation [2,3]. It has been proved
that a PT-symmetric Hamiltonian is in its unbroken PT-
symmetry phase if its eigenfunctions are also those of the
PT operator [4–6]. To respect PT symmetry, a necessary
(but not sufficient) condition is that the Hamiltonian
potential is even in its real part and odd in its imaginary
part in space. As the amplitude of the imaginary part goes
beyond a threshold, a transition from the unbroken to
broken PT symmetry phase can be observed, in which the
real energy spectrum becomes complex abruptly. Such
threshold corresponds to an exceptional point or a sponta-
neous breakdown point of PT symmetry, where the
amplitudes of the real and imaginary parts are identical.
In the past several years, much effort has been dedicated to
the realization of PT-synthetic medium [5,6], which
possesses the required complex PT-symmetric potentials
through balanced gain-loss modulation. Unconventional
phenomena, such as Bloch oscillations [7,8], unidirectional
invisibility or reflectionlessness [9–13], coherent perfect
absorption [14–16], single-mode or vortex lasing [17–19],
and low-power light-light switching [20], have been sub-
sequently demonstrated. However, the experimental inves-
tigations of PT-synthetic optical media are hitherto based

on one-dimensional (1D) waveguides, in which the wave
propagation direction is parallel or perpendicular to the PT
potential. PT symmetry in higher-dimensional space has
only been theoretically discussed [21–26].
Acoustic PT-symmetric systems [27–32], albeit in an

early stage, have exhibited significant value in many
aspects, including one-way cloak [27], invisible sensing
[28], and phonon lasing [31]. Still, those designs followed
the similar approach of 1D gain-loss dimer configuration.
To overcome the absence of acoustic gain medium in
nature, active sound generating unit [28,29,33], or addi-
tional fluid field [32] has been applied to provide wave
amplification in experiment, but the complex circuit and
external energy supply requirement inevitably reduce the
robustness and usability. Nevertheless, airborne sound
shows great flexibility in expanding PT symmetry in
higher-dimensional space due to its longitudinal wave
nature, as well as the zero cutoff within waveguides.
To demonstrate the capability of a passive acoustic

system to carry the PT symmetry study and tailor the
associated unpaired wave vectors in 2D space, we show
here the realization of unidirectional sound focusing, with
an all passive acoustic PT-symmetric metamaterials crystal
[34]. Metamaterials, artificially structured on subwave-
length scale to obtain exotic properties absent in nature,
have enabled many extraordinary ways of wave manipu-
lation [35–37]. For our design, as depicted in Fig. 1,
the acoustic PT-symmetric material is constructed through
periodically interleaving two different passive metastruc-
tures, the groove- and holey-structured metamaterials,
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along the radial direction inside an acoustic waveguide.
Arranged in the form of a 2D circumferentially expanded
Bragg reflector within the annular sector region, it provides
balanced real and imaginary part modulations, required by
the passive PT-symmetric system, to the refractive index.
This complex modulation offers a unidirectional wave
vector [9,12] q ¼ −2kBr=r toward the sector center, where
kB is the wave number at the Bragg frequency fB. For the
1D scenario [9,12], when the frequency f is deviated away
from fB, the incidence wave vector ki, the reflection wave
vector kr, and the unidirectional wave vector q provided by
the complex modulation are mismatched for forward and
backward incidences, leading to a trivial effect of bidirec-
tional reflectionlessness. When the system operates at
fB, the wave-vector matching condition kr ¼ qþ ki
(jkij ¼ jkrj ¼ kB) is satisfied only along the forward
direction, giving rise to a nontrivial effect of unidirectional
reflectionlessness. For our passive acoustic PT-symmetric

metamaterials crystal, the wave-vector matching obeys the
rule of 2D vector addition [38]; thus, strong specular
reflection occurs at particular positions where ki, kr, and
q (not necessarily parallel) become matched [the inset of
Fig. 1(a)], allowing a possibly higher reflection frequency
(jkij þ jkrj > jqj, when f > fB), so that the unidirectional
focusing can be observed over the spectrum. Note that such
wave-vector match does not require the incident angle to be
small with respect to q [39]. Hence, it is not the simple
case of paraxial wave propagation in 1D PT-symmetric
medium, but rather a physical problem of interactions
between incident waves and PT-symmetric potential in
2D space. The resultant PT potential goes beyond the gain-
loss dimer configuration, generating equivalent unpaired
wave vectors to enable unidirectional reflectionlessness
(along with acoustic transparency) and one-way focusing
over a considerable bandwidth.
The evolution from the exact to the passivePT-symmetric

modulation along the radial direction is presented in
Fig. 2(a). The PT-symmetric modulation of the refractive
index is given in a generalized form ΔnðxÞ ¼ nðxÞ − n0 ¼
n0 cosðqxÞ þ iδn0 sinðqxÞ with n0 ≪ n0, where n0, n0, and δ
denote the background refractive index, modulation ampli-
tude, and modulation ratio, respectively. The complex

FIG. 1. All passive acoustic PT-symmetric metamaterials
crystal. (a) Unidirectional focusing based on directional wave-
vector matching. The upper-left inset is an illustration of the
specular reflection induced by wave-vector matching kr ¼ qþ ki
(jkij ¼ jkrj) in 2D space. For different frequencies k0ðredÞ <
k00ðgreenÞ < k000ðblueÞ, such reflections exist at different areas
along the arc, so that the reflected waves are focused within a
small zone. q does not provide any wave-vector matching for
backward incidence, thus leading to no reflection. (b) The
fabricated passive acoustic PT-symmetric metamaterials crystal.
The circumferential opening angle 60° in the x–y plane is divided
into six segments of equal opening angle 9.7°. (c) The real and
imaginary part modulations. Each individual modulation is
T=2 ¼ 30 mm in length within a planar waveguide of heightH ¼
20 mm [39]. The real part modulation: 3D-printed groove-
structured metamaterials of opening width w ¼ 1.2 mm, depth
h ¼ 3 mm, and interval p ¼ 2 mm (lower-right inset: enlarged
photo). The imaginary part modulation: holey-structured meta-
materials, viz., the 60-μm-thick mesh fabrics (upper-right inset:
scanning electron microscope image). The average pore size and
open area are 7 μm and 2%. Its acoustic impedance is about
4000 Pa s=m.

FIG. 2. Exact and passive acoustic PT-symmetric potentials.
(a) Evolution of the acoustic PT-symmetric potential through
refractive index modulations: I. Exact PT-symmetric potential
ðcomplex exponential modulationÞ → II. Exact PT-symmetric
potential ðcomplex square-wavemodulationÞ → III. Passive
PT-symmetric potential ðtruncated complex square-wave
modulationÞ → IV. Passive PT-symmetric potential (3π=2 in
phase shift of the real part modulation). The red (blue) curves
denote the real (imaginary) part modulations. (b) Arrangement
of the real part and imaginary part refractive index modulators.
The modulation period is Tm ¼ 2T. (c) Absolute value of the
eigenvalues and (d) the second term of the eigenvectors of the
scattering matrix, where lines and circles correspond to exact and
passive PT-symmetric potentials [II and IV in (a)]. During the
calculations, the modulation amplitude is set as n0 ¼ 0.001n0 and
the total length L ¼ 100T, with operating frequency being the
Bragg frequency.
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exponential modulation can be replaced with a complex
square-wave modulation [I → II, Fig. 2(a)] to simplify the
structural design requirement [27]. Alternatively, the com-
plex exponential modulation can be regarded as the
first-order Fourier expansion of a complex square-wave
modulation. Because of the absence of natural gain medium
for sound, the complex square-wavemodulation is truncated
by only considering x ∈ ½4mπ=qþ π=q; 4mπ=qþ 2π=q�.
After truncation [II → III, Fig. 2(a)], only one negative half
cycle out of two periods of the imaginary part modulation is
retained, making the modulation period doubled (from
T ¼ 2π=q to 2T ¼ 4π=q), where we focus on the second-
order Bragg scattering [12]. This treatment leaves us
sufficient space to further conduct an in-phase shift of the
real part modulation, so that the overlap between the real and
imaginary parts can be spatially separated, aswewill present
later. If we apply the Fourier transformation to the exact
and passive square-wave modulations as ΔnðxÞ=n0 ¼
Cq expðiqxÞ þ C−q expð−iqxÞ þ C0, wemay find that there
exists a factor of 4 in the coefficients Cq and C−q between
these two modulations [39]. In a weak coupling regime, the
scattering matrix subject to such passive PT-symmetric
potential can be derived based on the coupled-mode theory.
The associated eigenvalues λ1;2 ¼ t� ffiffiffiffiffiffiffiffiffirfrb

p , where t, rf,
and rb denote the transmission and forward- and backward-
reflection coefficients, can be expressed as [39]

λ1;2 ¼ aλ01;2 ¼ a
1� i 1

2π
κ
γ sinhðγLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
4π2

κ2

γ2
sinh2ðγLÞð1 − δ2Þ

q ; ð1Þ

with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
4π2

κ2

γ2
sinh2ðγLÞð1 − δ2Þ

q

coshðγLÞ − δ
4
α
γ sinhðγLÞ

;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδα=4Þ2 þ ð1 − δ2Þκ2=4π2
q

:

Here, α is the attenuation coefficient inside the modu-
lated region and κ is the coupling coefficient between
forward and backward propagating modes. Evidently, the
eigenspectrum of the passive PT-symmetric system (λ1;2) is
the exact PT-symmetric system (λ01;2) multiplied by a factor
a < 1 that offsets the eigenvalues toward losses. When
0 ≤ δ < 1, λ01;2 are conjugated and unimodular. The system
operates in the passive unbroken PT symmetry phase.
When δ > 1, λ01;2 are nonunimodular with a pair of
reciprocal moduli. The system operates in the passive
broken PT symmetry phase. When δ ¼ 1, the eigenvalues
become degenerate with λ1;2 ¼ a ¼ expð−αL=4Þ. In this
case, similar to the phase transition point from the unbroken
to broken PT symmetry phase in an exact PT-symmetric
system, the passive PT-symmetric system experiences an
exceptional point where a π phase shift occurs with
backward reflection vanished. The real part modulation

is then shifted 3π=2 in phase to eliminate its overlap with
the imaginary part modulation [III → IV, Fig. 2(a)]. It
allows a more practical construction of the passive PT-
symmetric system as we may now design the real and
imaginary part modulators independently. The absolute
value of λ1;2 ¼ t� ffiffiffiffiffiffiffiffiffirfrb

p and the second components of

the eigenvectors ð 1 � ffiffiffiffiffiffiffiffiffiffiffi

rb=rf
p ÞT for both the exact and

passive PT-symmetric systems [II and IV, Fig. 2(a)] are
calculated using the transfer matrix method [39]. In
Fig. 2(c), jλ1j and jλ2j overlap (conjugate eigenvalues) in
exact or passive unbroken PT symmetry phase (0 ≤ δ < 1),
degenerate at the exceptional point (δ ¼ 1), and are unequal
in exact or passive broken PT symmetry phase (δ > 1).
This is further confirmed by Fig. 2(d), where � ffiffiffiffiffiffiffiffiffiffiffi

rb=rf
p

are
either purely real at 0 ≤ δ < 1 or purely imaginary at δ > 1
[27]. The results show similar characteristics in PT phase
evolution between the two systems.
By curling such 1D passive PT-symmetric potential

circumferentially, the resulted medium can offer radial
unidirectional wave vectors in the global coordinates
for incoming waves [39], equivalent to the exact PT-
symmetric modulation of the refractive index ΔnðrÞ ¼
n0 exp½iqðr − r0Þ�, where r0 is the starting radius of the PT-
symmetric potential sector. The passive PT-symmetric
metamaterials crystal is constructed using two paralleled
rigid plates carved with curved slot openings to install the
refractive index modulators [39]. The real part modulation
is realized by the 3D-printed groove-structured metamate-
rials shown in Fig. 1(c), well known for its capability to
decelerate sound waves. The effective loss for the imagi-
nary part modulation can be accomplished through pur-
posely introduced sound leakage, similar to the radiation
losses in optics [45]. Slit structures have been proposed for
such purpose, but with the downside of strong dispersion
[29]. Instead, we go with the holey-structured acoustic
metamaterials, viz., commercial mesh fabrics shown
in Fig. 1(c). Their homogeneously distributed deep-
subwavelength pores guarantee sufficiently high acoustic
resistance-reactance ratio and precise leakage control,
leading to almost nondispersive loss. It would enable the
approximately balanced modulation required by the excep-
tional point in a broader bandwidth.
We conducted full-wave simulations and experiments to

test the hypothesis. The modulation amplitude and period
are set as n0 ¼ 0.05n0 and 2T ¼ 120 mm. During the
measurement [39], a loudspeaker array is employed to
generate plane waves. The sound fields are scanned by a
3-mm-diameter microphone. Figure 3(a) presents the nor-
malized sound energy density fields for forward and
backward incidences at 3000 Hz, in which the simulated
and measured results agree well. Remarkable contrast in
opposite directions can be observed from the different
interference patterns within the measurement areas, marked
by the white boxes. To validate that the focusing effect is
indeed from the unidirectional wave vectors offered by our
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passive PT-symmetric metamaterials crystal, rather than
from the geometric shape of the entire concave surface, the
measured sound pressure distributions at different frequen-
cies along y ¼ 0 are presented in Fig. 3(b). The overall
amplitude of the standing-wave fields is frequency depen-
dent for forward incidence [Fig. 3(b), the upper panel],
while being almost frequency independent for backward
incidence [Fig. 3(b), the lower panel]. It can be inferred
that, when the passive PT-symmetric metamaterials crystal
is replaced by a rigid concave reflector, the overall
amplitude of both the forward and backward standing-
wave fields would be frequency independent within the
studied spectrum [39]. At the exceptional point, the system
is strongly reflective from one side, but nearly reflectionless
from the other. Here, the forward and backward standing-
wave ratios Gf and Gb, viz., the ratio between the peak and
valley values of the standing-wave fields [Fig. 3(c)], are
extracted as indicators to evaluate the reflection strengths.
The contrast ratio Gf=Gb plotted in Fig. 3(d) can thus be
used to estimate the difference between the forward and
backward reflections. Note that the interference pattern is a
result of the superposition between the incident and
reflected waves propagating in all possible directions. To

reduce the disturbance of reflections from the positions at
y ≠ 0, we chose to extract Gf away from the focal spot,
where the reflected waves diverge and the normal reflection
along y ¼ 0 dominates. In Fig. 3(d), the peak shows that
the contrast between forward and backward reflections
along the x direction reaches maximum, which occurs
nearby the exceptional point. A slight red shift of the Bragg
frequency (from 2858 to 2820 Hz) is caused by the
increased overall refractive index after 3π=2 in phase shift
of the real part modulation. Another way to further confirm
this one-way wave-vector matching behavior is by simply
reversing the directions of the complex refractive index
modulation, that is, by switching the reflective and the
reflectionless sides. In this scenario, the concave surface
would merely generate a very weak focusing effect [39].
The acoustic focusing effect over the spectrum enabled by

directional wave-vector matching is further examined in the
simulated scattered sound energy density fields of Fig. 4(a).
At 2500 Hz, lower than fB, the large wave-vector mismatch
hardly induces any reflection for the forward incidence.
When f approaches and eventually surpasses fB, the wave-
vector matching condition is approximately satisfied within
the 2D plane, giving rise to clear reflections and focused

FIG. 3. Unidirectional sound reflection and focusing. (a) Simulated (left) and measured (right) acoustic energy density fields for the
forward (upper) and backward (lower) incidences at 3000 Hz. The white boxes mark the measurement areas. The arrows denote
incidence directions. (b) Absolute acoustic pressure distributions for forward (upper) and backward (lower) incidences, along the white
dashed lines marked in (a), from 2500 to 3200 Hz, with 50 Hz stepping. The dashed rectangles indicate the areas where the standing-
wave ratios Gf and Gb are extracted (x ¼ −0.55 to − 0.63 m and x ¼ 0.94–1.02 m). (c) Simulated and measured standing-wave
patterns at 3000 Hz for the forward incidence. The red (black) arrow marks the peak and valley that we employ to calculate Gf ¼
ppeak=pvalley in experiment (simulation). The extraction of Gb follows the same process. (d) Extracted contrast ratio Gf=Gb versus
frequency. The error bars are generated from four repeated measurements.
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sound field. The measured interference patterns in Fig. 4(b)
prove this frequency-dependent reflection wave front
change, consistent with the simulation results. The simu-
lated energy density distributions along the dashed lines in
Fig. 4(a) are displayed in Figs. 4(c) and 4(d) for multiple
operating frequencies. Clearly, the focal spots are located
within a small area over the spectrum.
In conclusion, complex modulation of the refractive index

enables the study of PT symmetry with acoustic systems. In
contrast to the balanced gain-loss configurations that require
gainmediumor external intervention, our all passive acoustic
metamaterials crystal provides intrinsic PT-symmetric
potential to generate unpaired wave vectors via refractive
index modulation in a complex domain. By expanding the
potential in 2D space, we demonstrate the exceptional point
and the unidirectional sound focusing effect (along with
reflectionless acoustic transparency in the opposite direction)
over a certain spectrum. Moreover, the absence of cutoff in
such acoustic PT-symmetric system makes the extension of
general PT symmetry study in multidimensional space
highly feasible. To further construct a genuine 2D passive
PT-symmetric material, we may combine multiple passive
PT-symmetric potentials into one region, so that thematerial
can simultaneously offer differently oriented unpaired wave

vectors [39]. Our study not only provides a new degree of
freedom to the realization of unique wave dynamics for
applications like noise control, acoustic sensing, and imag-
ing, but also paves the way toward practical investigation of
other quantum-analogue phenomena.

The work was supported by the Early Career Scheme
(ECS) of Hong Kong RGC (Grant No. 25208115). X. Z.
acknowledges support from National Natural Science
Foundation of China (Grants No. 11690030,
No. 11690032, and No. 11674119). We thank Mannian
Yang and Saati Technical Fabric (Tianjin) Co. Ltd. for
providing the mesh fabrics samples.

T. L. and X. Z. contributed equally to this work.

*Corresponding author.
xfzhu@hust.edu.cn

†Corresponding author.
jiezhu@polyu.edu.hk

[1] C. M. Bender and S. Boettcher, Real Spectra in Non-
Hermitian Hamiltonians Having PT Symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

FIG. 4. Unidirectional sound focusing over spectrum. (a) Simulated scattered energy density fields at 2500, 2850, 3050, and 3150 Hz.
For forward incidences at different frequencies, strong reflections occur at different locations, marked by the white asterisks, to form
focal areas. (b) Measured total energy density fields for the forward incidence at frequencies shown in (a). The interference pattern varies
with frequency due to the change of reflected wave front normal, indicated by the white arrows. (c),(d) Simulated scattered energy
density distributions along the dashed lines x ¼ −350 mm and y ¼ 0 mm in (a). All the curves are normalized per the maximum. The
shadow area in (d) indicates the spatial range of focal zones at multiple frequencies.

PHYSICAL REVIEW LETTERS 120, 124502 (2018)

124502-5

https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243


[2] C. M. Bender, D. C. Brody, and H. F. Jones, Complex
Extension of Quantum Mechanics, Phys. Rev. Lett. 89,
270401 (2002).

[3] C. M. Bender, Making sense of non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[4] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, Beam Dynamics in PT Symmetric
Optical Lattices, Phys. Rev. Lett. 100, 103904 (2008).

[5] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Observation of PT-Symmetry Breaking
in Complex Optical Potentials, Phys. Rev. Lett. 103, 093902
(2009).

[6] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation of
parity-time symmetry in optics, Nat. Phys. 6, 192 (2010).

[7] S. Longhi, Bloch Oscillations in Complex Crystals with PT
Symmetry, Phys. Rev. Lett. 103, 123601 (2009).

[8] Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y.
Li, A. Scherer, and Y. F. Chen, Experimental realization of
Bloch oscillations in a parity-time synthetic silicon photonic
lattice, Nat. Commun. 7, 11319 (2016).

[9] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
D. N. Christodoulides, Unidirectional Invisibility Induced
by PT-Symmetric Periodic Structures, Phys. Rev. Lett. 106,
213901 (2011).

[10] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Parity-time synthetic
photonic lattices, Nature (London) 488, 167 (2012).

[11] L. Ge, Y. D. Chong, and A. D. Stone, Conservation relations
and anisotropic transmission resonances in one-dimensional
PT-symmetric photonic heterostructures, Phys. Rev. A 85,
023802 (2012).

[12] L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira,
V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental
demonstration of a unidirectional reflectionless parity-time
metamaterial at optical frequencies, Nat. Mater. 12, 108
(2013).

[13] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity-time-symmetric whispering-gallery microcavities,
Nat. Phys. 10, 394 (2014).

[14] S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82,
031801 (2010).

[15] Y. D. Chong, L. Ge, and A. D. Stone, PT-Symmetry Break-
ing and Laser-Absorber Modes in Optical Scattering
Systems, Phys. Rev. Lett. 106, 093902 (2011).

[16] Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental
Demonstration of a Coherent Perfect Absorber with
PT Phase Transition, Phys. Rev. Lett. 112, 143903
(2014).

[17] L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang,
Single-mode laser by parity-time symmetry breaking,
Science 346, 972 (2014).

[18] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, Parity-time-symmetric microring la-
sers, Science 346, 975 (2014).

[19] P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M.
Litchinitser, and L. Feng, Orbital angular momentum
microlaser, Science 353, 464 (2016).

[20] H. Zhao, W. S. Fegadolli, J. Yu, Z. Zhang, L. Ge, A. Scherer,
and L. Feng, Metawaveguide for Asymmetric Interferomet-
ric Light-Light Switching, Phys. Rev. Lett. 117, 193901
(2016).

[21] C. M. Bender and D. J. Weir, Phase transition in multidi-
mensional quantum systems, J. Phys. A 45, 425303
(2012).

[22] C. M. Bender, M. Gianfreda, and S. P. Klevansky, Systems
of coupled PT-symmetric oscillators, Phys. Rev. A 90,
022114 (2014).

[23] L. Ge and A. D. Stone, Parity-Time Symmetry Breaking
Beyond One Dimension: The Role of Degeneracy, Phys.
Rev. X 4, 031011 (2014).

[24] M. Turduev, M. Botey, I. Giden, R. Herrero, H. Kurt, E.
Ozbay, and K. Staliunas, Two-dimensional complex parity-
time-symmetric photonic structures, Phys. Rev. A 91,
023825 (2015).

[25] H. Benisty, A. Lupu, and A. Degiron, Transverse periodic
PT symmetry for modal demultiplexing in optical wave-
guides, Phys. Rev. A 91, 053825 (2015).

[26] W.W. Ahmed, R. Herrero, M. Botey, and K. Staliunas,
Locally parity-time-symmetric and globally parity-symmet-
ric systems, Phys. Rev. A 94, 053819 (2016).

[27] X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, PT-
Symmetric Acoustics, Phys. Rev. X 4, 031042 (2014).

[28] R. Fleury, D. Sounas, and A. Alù, An invisible acoustic
sensor based on parity-time symmetry, Nat. Commun. 6,
5905 (2015).

[29] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y.
Wang, and X. Zhang, Accessing the exceptional points of
parity-time symmetric acoustics, Nat. Commun. 7, 11110
(2016).

[30] J. Christensen, M. Willatzen, V. R. Velasco, and M. H. Lu,
Parity-Time Synthetic Phononic Media, Phys. Rev. Lett.
116, 207601 (2016).

[31] A. V. Poshakinskiy, A. N. Poddubny, and A. Fainstein,
Multiple Quantum Wells for PT-Symmetric Phononic
Crystals, Phys. Rev. Lett. 117, 224302 (2016).

[32] Y. Aurégan and V. Pagneux, PT-Symmetric Scattering
in Flow Duct Acoustics, Phys. Rev. Lett. 118, 174301
(2017).

[33] B. I. Popa and S. A. Cummer, Non-reciprocal and highly
nonlinear active acoustic metamaterials, Nat. Commun. 5,
3398 (2014).

[34] A. Salandrino and N. Engheta, Far-field subdiffraction
optical microscopy using metamaterial crystals: Theory
and simulations, Phys. Rev. B 74, 075103 (2006).

[35] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan,
and P. Sheng, Locally resonant sonic materials, Science 289,
1734 (2000).

[36] N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-diffraction-
limited optical imaging with a silver superlens, Science 308,
534 (2005).

[37] N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Negative
refractive index and acoustic superlens from multiple
scattering in single negative metamaterials, Nature
(London) 525, 77 (2015).

[38] X. Zhu, L. Feng, P. Zhang, X. Yin, and X. Zhang, One-way
invisible cloak using parity-time symmetric transformation
optics, Opt. Lett. 38, 2821 (2013).

PHYSICAL REVIEW LETTERS 120, 124502 (2018)

124502-6

https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1038/ncomms11319
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevA.85.023802
https://doi.org/10.1103/PhysRevA.85.023802
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nphys2927
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.aaf8533
https://doi.org/10.1103/PhysRevLett.117.193901
https://doi.org/10.1103/PhysRevLett.117.193901
https://doi.org/10.1088/1751-8113/45/42/425303
https://doi.org/10.1088/1751-8113/45/42/425303
https://doi.org/10.1103/PhysRevA.90.022114
https://doi.org/10.1103/PhysRevA.90.022114
https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevA.91.023825
https://doi.org/10.1103/PhysRevA.91.023825
https://doi.org/10.1103/PhysRevA.91.053825
https://doi.org/10.1103/PhysRevA.94.053819
https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1103/PhysRevLett.116.207601
https://doi.org/10.1103/PhysRevLett.116.207601
https://doi.org/10.1103/PhysRevLett.117.224302
https://doi.org/10.1103/PhysRevLett.118.174301
https://doi.org/10.1103/PhysRevLett.118.174301
https://doi.org/10.1038/ncomms4398
https://doi.org/10.1038/ncomms4398
https://doi.org/10.1103/PhysRevB.74.075103
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1126/science.1108759
https://doi.org/10.1126/science.1108759
https://doi.org/10.1038/nature14678
https://doi.org/10.1038/nature14678
https://doi.org/10.1364/OL.38.002821


[39] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.124502 for theory,
metamaterials design, additional simulations, sample fabri-
cation, and experimental setup, which includes Ref. [40–44].

[40] J. W. S. B. Rayleigh, The Theory of Sound (MacMillan,
London, 1929), 2nd ed., Vol. 2, p. 333.

[41] G. Kirchhoff, Ueber den Einfluss derWärmeleitung in einem
Gase auf die Schallbewegung, Ann. Phys. 210, 177 (1868).

[42] C. Zwikker and C.W. Kosten, Sound Absorbing Materials
(Elsevier, Amsterdam, 1949), Chap. 2.

[43] D. Y. Maa, Potential of microperforated panel absorber,
J. Acoust. Soc. Am. 104, 2861 (1998).

[44] V. Fokin, M. Ambati, C. Sun, and X. Zhang, Method for
retrieving effective properties of locally resonant acoustic
metamaterials, Phys. Rev. B 76, 144302 (2007).
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