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Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera
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We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems
where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and
are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron
spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy
breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a
relativistic quantum setting—henceforth the term “Dirac quantum chimera,” associated with which are
physical phenomena with potentially significant applications such as enhancement of spin polarization,
unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics.
Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic

Dirac fermion systems.
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The tremendous development of two-dimensional (2D)
Dirac materials such as graphene, silicene, and germanene
[1-5], in which the low-energy excitations follow the
relativistic energy-momentum relation and obey the
Dirac equation, has led to the emergence of a new area
of research: Dirac electron optics [6-33]. Theoretically, it
was articulated early [7] that Klein tunneling and the
unique gapless conical dispersion relation can be exploited
to turn a simply p-n junction into a highly transparent
focusing lens with a gate-controlled negative refractive
index, producing a Vaselago lens for the chiral Dirac
fermions in graphene. The negative refraction of Dirac
fermions obeys the Snell’s law in optics and the angularly
resolved transmittances in analogy with the Fresnel coef-
ficients in optics have been recently confirmed experimen-
tally [20,26]. Other works include various Klein-tunneling
junction based electronic counterparts of optical phenom-
ena such as Fabry-Pérot resonances [8,13], cloaking
[11,14], waveguides [12,19], the Goos-Hédnchen effect
[9], the Talbot effect [22], beam splitter and collimation
[21,28,29], and even the Dirac fermion microscope [33]. A
Dirac material based electrostatic potential junction with a
closed interface can be effectively tuned to optical guiding
and acts as an unusual quantum electron-optics element
whose effective refractive index can be electrically modu-
lated, in which phenomena such as gate controlled caustics
[6], electron Mie scattering [15,23-25], and whispering
gallery modes [17,18,30,31] can arise. In addition, uncon-
ventional electron optical elements have been demonstrated
such as valley resolved waveguides [34,35] and beam
splitters [27], electronic birefringent superlens [16], and
spin (current) lens [10,32]. Research on Dirac electron
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optics offers the possibility to control Dirac electron flows
in a similar way as for light.

In this Letter, we address the role of chaos in Dirac
electron optics. In nonrelativistic quantum mechanics, the
interplay between chaos and quantum optics has been
studied in microcavity lasers [36—-39] and deformed dielec-
tric microcavities with non-Hermitian physics and wave
chaos [40]. With the development of Dirac electron optics
[6-33], the relativistic electronic counterparts of deformed
optical dielectric cavities or resonators have become
accessible. For massless Dirac fermions in ballistic gra-
phene, the interplay between classical dynamics and
electrostatic confinement has been studied [41-44] with
the finding that integrable dynamics lead to sharp transport
resonances due to the emergence of bound states while
chaos typically removes the resonances. In these works, the
uncharged degree of freedom such as electron spin, which
is fundamental to relativistic quantum systems, was not
treated.

Our focus is on the interplay between ray-path defined
classical dynamics and spin in Dirac electron optical
systems. To be concrete, we introduce an electrical gate
potential defined junction with a ring geometry, in analogy
to a dielectric annular cavity. Classically, this system
generates integrable and mixed dynamics with the chaotic
fraction of the phase space depending on the ring eccen-
tricity and the effective refractive index configuration,
where the index can be electrically tuned to negative values
to enable Klein tunneling. Inside the gated region, the
electron spin degeneracy is lifted through an exchange
field from induced ferromagnetism, leading to a class of
spin-resolved, electrically tunable quantum systems of
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electron optics with massless Dirac fermions (by mimick-
ing the photon polarization resolved photonic cavities made
from synthesized chiral metamaterials). We develop an
analytic wave function matching solution scheme and
uncover a striking quantum scattering phenomenon: man-
ifestations of classically integrable and chaotic dynamics
coexist simultaneously in the system at the same parameter
setting, which mimics a chimera state in classical complex
dynamical systems [45-52]. The basic underlying physics
is the well-defined, spin-resolved, gate-controllable refrac-
tion index that dominantly controls the ballistic motion of
short-wavelength Dirac electrons across the junction inter-
face, in which the ray tracing of reflection and refraction
associated with particles belonging to different spin states
generates distinct classical dynamics inside the junction or
scatterer. Especially, with a proper gate potential, the spin-
dependent refractive index profile can be controlled to
generate regular ray dynamics for one spin state but
generically irregular behavior with chaos for the other. A
number of highly unusual physical phenomena arise, such
as enhanced spin polarization with chaos, simultaneous
quasiscarred and whispering gallery type of resonances,
and spin-selective lensing with a starkly near-field separa-
tion between the local density of states (DOS) for spin-up
and spin-down particles.

Low energy excitations in 2D Dirac materials are
described by the Dirac-Weyl Hamiltonian Hy = vpo - p,
where vy is the Fermi velocity, p = (p,,p,) is the
momentum measured from a given Dirac point, and 6 =
(0, 0,) are Pauli matrices for sublattice pseudospin. In the
presence of a gate potential and an exchange field due to the
locally induced ferromagnetism inside the whole gated
region, the effective Hamiltonian is H = vpsy ® o - p+
50 ® 60Veae(r) — 5, ® 09 M (r), where the Pauli matrix s,
acts on the real electron spin space, s, and o, both are
identity matrices, Vg, (r) and M(r) are the electrostatic
and exchange potential, respectively. Because of the
pseudospin-momentum locking (i.e., o - p), a nonuniform
potential couples the two pseudospinor components, but
the electron spin components are not coupled with each
other. The exchange field breaks the twofold spin degen-
eracy. Since [s, ® oy, H] =0, the Hamiltonian can be
simplified as H; = Hy + Vgae (r) — sM(r) with s =+
denoting the electron spin quantum number. Because of
M, the Dirac-type Hamiltonian H, can give rise to spin
dependent physical processes.

For the ring configuration in Fig. 1(a) and assuming the
potentials are smooth on the scale of the lattice spacing but
sharp in comparison with the conducting carriers’ wavelength,
in the polar coordinates r = (r,6), we have V. (r) =
hopy (R, — r)O(|r — & — Ry) + hopnO(R, — [r — §)),
and M(r) = hvpu®(R, — r), where @ is the Heaviside step
function, R, is the radius of the small disk gated region of
strength vy (v, — vy ) placed inside a larger disk of radius R,
(> R,) and strength v vy, the displacement vector between

sin(8)

sin()

FIG. 1.

Scattering system and classical ray dynamics.
(a) Annular shaped scattering region with eccentricity
&= 00/, (b) a cross-sectional view, (¢),(d) chaotic and integrable
ray dynamics on the Poincaré surface of section defined by the
Birkhoff coordinates (6, sin ) for spin-up and -down particles,
respectively, where 6 denotes the polar angle of a ray’s inter-
section point with the cavity boundary and g is the angle of
incidence with respect to the boundary normal. The quantity sin
is proportional to the angular momentum and the critical lines for
total internal reflection are given by sinf,. = +1/n,.

the disk centers is € = (£, 0), and the exchange potential has
the strength Avpu over the whole gated region. The two
circular boundaries divide the domain into three distinct
regions: I r>Ry; I r<R; and |r—§ > R,; 1L
|r — &l < R,. For given particle energy E = hvge, the
momenta in the respective regions are kL =|e|,
K' = |e — vy + su|, and kM = |e — v, + su|. Within the
gated region, the exchange potential splits the Dirac cone
into two in the vertical direction in the energy domain while the
electrostatic potential simply shifts the cone, leading to a
spin-resolved, gate-controllable annular junction for massless
Dirac electrons.

In the short wavelength limit, locally the curved junction
interface appears straight for the electrons, so the gated
regions and the surroundings can be treated as optical
media. The unusual feature here is that the refractive

indices are spin dependent: ni™ = (¢ 4 sy — via)/e€,
similar to light entering and through a polarization resolved
photonic crystal [53,54]. Given the values of e and p,
depending on the values of v, the refractive indices for
the two spin states can be quite distinct with opposite signs.
The system is thus analogous to a chiral photonic meta-
material based cavity, which represents a novel class of
Dirac electron optics systems.

The classical behaviors of Dirac-like particles in the
short wavelength limit can be assessed using the optical
analogy, as done previously for circularly curved p-n
junctions [6,33], where the classical trajectories are defined
via the principle of least time. Because of the spin
dependent and piecewise constant nature of the index
profile, the resulting stationary ray paths for the Dirac
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electrons are spin-resolved and consist of straight line
segments. At a junction interface, there is ray splitting
governed by the spin-resolved Snell’s law. On a Poincaré
surface of the section, the classical dynamics are described
by a spin-resolved map F; relating the dynamical variables
6 and g (Fig. 1) between two successive collisions with the
interface: (6;,sinf;) — (0;,1,sinp;, ;). The ray-splitting
picture is adequate for uncovering the relativistic quantum
fingerprints of distinct classical dynamics.

Spin-resolved ray trajectories inside the junction lead to
the simultaneous coexistence of distinct classical dynamics.
For example, for the parameter setting v, = —v; = € = p,
i.e., nl =2+ sand n!' = s, for spin-up particles (s = +),
the junction is an eccentric annular electron cavity char-
acterized by the refractive indices n'l =3 and n!l' = 1, as
exemplified in Fig. 1(b) for £ = 0.3. However, for spin-
down particles (s = —), the junction appears as an off-
centered negatively refracted circular cavity with a1 =1
and n™' = —1. Figures 1(c) and 1(d) show the correspond-
ing ray dynamics on the Poincaré surface of section for
spin-up and -down particles, respectively, where the former
exhibit chaos while the dynamics associated with the latter
are integrable with angular momentum being the second
constant of motion.

For a spin unpolarized incident beam, the simultaneous
occurrence of integrable and chaotic classical dynamics
means the coexistence of distinct quantum manifestations,
leading to the emergence of a Dirac quantum chimera. To
establish this, we carry out a detailed analysis of the
scattering matrices for spin-dependent, relativistic quantum
scattering and transport through the junction. Using
insights from analyzing optical dielectric cavities [55,56]
and nonrelativistic quantum billiard systems [57,58], we
develop an analytic wave function matching scheme at the
junction interfaces (See Supplemental Material [59] which
includes Refs. [24,30,60-64]) to solve the Dirac-Weyl
equation to obtain the scattering matrix S as a function
of the energy E as well as the spin polarization s for given
system parameters R,/R;, &, vy,, and p. The Wigner-
Smith time delay [60,61] is defined from the S matrix as
t = —ihTr[ST(0S/OE)], which is proportional to the DOS
of the cavity. Large positive values of 7 signify resonances
associated with the quasibound states [65]. Physically, a
sharper resonance corresponds to a longer trapping lifetime
and scattering time delay. Previous works on wave or
quantum chaotic scattering [66-85] established that
classical chaos can smooth out (broaden) the sharp reso-
nances and reduce the time delay markedly while integrable
dynamics can lead to stable, long-lived bound states (or
trapping modes).

We present concrete evidence for Dirac quantum chi-
mera. Figure 2(a) shows, for R,/R; = 0.6, u = —v; =5,
and v, = 45, the dimensionless time delay (on a logarith-
mic scale) versus the eccentricity £ and energy E (in units of
hvgp/R;). Figure 2(b) shows the maximum time delay
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FIG. 2. A Dirac quantum chimera. (a) Top: Contour map of
dimensionless Wigner-Smith time delay (on a logarithmic scale)
versus energy E and eccentricity & for spin-down (left) and -up
(right) cases, where the bright yellow color indicates larger
values. Middle and bottom panels: time delay and total cross
section averaged over all directions of the incident waves versus
E, respectively, for £ = 0.3. (b) Dependence of the maximum
time delay on & (red: spin-up; blue: spin-down). (c) Energy
averaged spin polarization versus &.

[within the given energy range in Fig. 2(a)] versus & for
spin-up (red) and spin-down (blue) particles. There are
drastic changes in the time delay as the energy is varied,
which are characteristic of well-isolated, narrow resonances
and imply the existence of relatively long-lived confined
modes. There is a key difference in the resonances
associated with the spin-up and -down states: the former
depend on the eccentricity parameter & and are greatly
suppressed for & > 0.2, while the latter are independent of
£. For example, the middle panel of Fig. 2(a) shows that, for
a severely deformed structure (£ = 0.3), there are sharp
resonances with high peak values of the time delay for the
spin down state, but none for the spin-up state. The
suppression of resonances associated with the spin-up
state is consistent with the behavior of the total cross
section &, (averaged over the directions of the incident
wave) given in terms of the S-matrix elements by &, =
(2k)=1 >0 o IS — 8,|*, as shown in the bottom panel
of Fig. 2(a). Because the classical dynamics for massless
fermions in the spin-up and -down states are chaotic and
integrable, respectively [cf., Figs. 1(c), 1(d)], there is
simultaneous occurrence of two characteristically different
quantum scattering behaviors for a spin unpolarized beam:
one without and another with sharp resonances. This
striking contrast signifies a Dirac quantum chimera.

Are there unexpected, counterintuitive physical phenom-
ena associated with a Dirac quantum chimera? Yes, there
are. Here we present two and point out their applied values.

The first is spin polarization enhancement, which has
potential applications to Dirac material based spintronics.
A general way to define spin polarization is through the
spin conductivities G*() as P. = (G¥ — G")/(GY + G").
Imagine a system consisting of a set of sparse, randomly
distributed, identical junction-type of annular scatterers,
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and assume that the scatterer concentration is sufficiently
low (n, < 1/ R%) so that multiple scattering events can be
neglected. In this case, the spin conductivities can be
related to the transport cross section as G'1/G, =

k/ (nca}rm), where G is the conductance quantum and

afrm can be calculated from the S matrix. For a spin

unpolarized incident beam along the x axis with equal spin-
up and -down populations, we calculate the average spin
polarization over a reasonable Fermi energy range as a
function of the eccentricity ¢, as shown in Fig. 2(c). For
& > 0.2 so classical chaos is relatively well developed and a
Dirac quantum chimera emerges, there is robust enhance-
ment of spin polarization. From the standpoint of classical
dynamics, the scattering angle is much more widely
distributed for spin-up particles (due to chaos) as compared
with the angle distribution for spin-down particles with
integrable dynamics, leading to a larger effective resistance
for spin-up particles. From an applied perspective, the
enhancement of spin polarization brought about by a Dirac
quantum chimera can be exploited for developing spin
rheostats or filters, where one of the spin resistances, e.g.,
R" « 1/G", can be effectively modulated through tuning
the deformation parameter ¢ so as to induce classically
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FIG. 3.

Spin polarized scarred and regular whispering-gallery-
mode resonances as a result of Dirac quantum chimera. (a),
(c) Real space probability densities (on a logarithmic scale) of the
representative quasibound states for spin-up and spin-down Dirac
electrons, respectively. For the spin-up particles, the spinor wave
solution is scarred by an unstable periodic ray trajectory obeying
the Snell’s law, as indicated by the red-dashed path with high-
lighted pentagram markers. The spin-down Dirac electrons are
associated with a whispering gallery ray path due to the
continuous total internal reflections denoted by the blue dotted
segments. (b),(d) The corresponding phase-space representations
with regions below the critical black dashed lines satisfying the
total internal reflection at the boundary. The distinct quasibound
modes are from simultaneous resonances under the same system
parameters, leading to a relativistic quantum chimera. Further
signatures of the chimera state can be seen in the plot of the total
cross section versus the particle energy for different spin states (e)
and a net spin distribution with a dramatic spin-resolved
separation in the real space confined inside the cavity (f).

chaotic motion for one type of polarization but integrable
dynamics for another.

The second phenomenon is resonance and lensing asso-
ciated with a Dirac quantum chimera. Figures 3(a)-3(f)
show, for £ = 0.27 (in units of R;), R,/R; = 0.6, v, =
4y, = —4u = 24.16 (in units of 1/R;) and E = 6.04 (in
units of v,/ R ), aresonant (quasibound) state, in which the
spatially separated, spin-resolved local DOS is confined
inside the cavity. The spin-up state is concentrated about a
particular unstable periodic orbit without the rotational
symmetry [Figs. 3(a) and 3(b)] and exhibits a scarring
pattern with a relatively short lifetime characterized by a
wider resonance profile, as shown in Fig. 3(e). Spin-down
particles are trapped inside the inner disk by a regular long-
lived whispering gallery mode associated with the integrable
dynamics [Figs. 3(c) and 3(d)]. The Dirac quantum chimera
thus manifests itself as the simultaneous occurrence of a
magnetic scarred quasibound state and a whispering gallery
mode excited by an incident wave with equal populations of
spin-up and -down particles, as shown in Fig. 3(f), a color-
coded spatial distribution of the difference between the local
DOS for spin-up and -down particles.
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FIG. 4. Spin-selective caustic lens and skew scattering asso-
ciated with a Dirac quantum chimera. (a) Caustic patterns
resulting from the scattering of a spin unpolarized planar incident
wave traveling along the positive x axis (¢’ = 0) with relatively
short wavelength, i.e., kR; = 70 > 1, and (c) from scattering of
the wave propagating along the direction that makes an angle
0 = n/4 with the x axis. (b),(d) The corresponding spatially
resolved near field net spin distributions measured by the
difference |y4|* — [y |*, respectively. () The resulting far-field
behavior characterized by the angular distributions of spin-
dependent differential cross sections with symmetric profiles
for @ =0 (left inset) and a spin-selective asymmetric one for
0" = r/4 (right inset), where both insets are plotted by the eighth

root of Ggffif) in order to weaken the drastic contrast variation in

magnitude for better visualization. Parameters are ¢ = 0.27,
RZ/RI = 06, Uy = U =—V| = 70, and E = 70.
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In the sufficiently short wavelength regime where the ray
picture becomes accurate, a spin-resolved lensing behavior
arises, due to the simultaneous occurrence of two distinct
quantum states associated with the chimera state. The
cavity can be regarded as an effective electronic
Veselago lens with a robust caustic function for spin-down
particles but the spin-up particles encounter simply a
conventional lens of an irregular shape. Particularly, for
a spin-unpolarized, planar incident wave, a spin-selective
caustic behavior arises, as shown in Figs. 4(a)-4(d) through
the color-coded near-field patterns. There is a pronounced
lensing caustic of the cusp type for the spin-down state
while a qualitatively distinct lensing pattern occurs for the
spin-up state. A consistent far-field angular distribution of
the differential cross section is shown in Fig. 4(e), which
gives rise to well-oriented or -collimated, spin-dependent
far-field scattering with the angle resolved profile mini-
mized into a small range due to the lensing effect. Despite a
lack of robust lensing, the spin-up particles in general
undergo asymmetric scattering, which can lead to spin-
polarized transverse transport in addition to longitudinal
spin filtering.

To summarize, we uncover a Dirac quantum chimera—a
type of relativistic quantum scattering states characterized
by the simultaneous coexistence of two distinct types of
behaviors as the manifestations of classical chaotic and
integrable dynamics, respectively. The physical origin of
the chimera state is the optical-like behavior of massless
Dirac fermions with both spin and pseudospin degrees of
freedom, which together define a spin-resolved Snell’s law
governing the chiral particles’ ballistic motion. The phe-
nomenon is predicted analytically based on quantum
scattering from a gate-defined annular junction structure.
The chimera has striking physical consequences such as
spin polarization enhancement, unusual quantum resonan-
ces, and spin-selective lensing, which are potentially
exploitable for developing 2D Dirac material-based elec-
tronic and spintronic devices.
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