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We introduce an optical system (a coupler) obeying parity-time (PT ) symmetry with odd-time reversal,
T 2 ¼ −1. It is implementedwith two birefringent waveguides embedded in an anti-PT -symmetricmedium.
The systempossesses properties that are untypical formost physical systemswith the conventional even-time
reversal. Having a symmetry-protected degeneracy of the linear modes, the coupler allows for the realization
of a coherent switch operating with a superposition of binary states that are distinguished by their
polarizations. When a Kerr nonlinearity is taken into account, each linear state, being doubly degenerated,
bifurcates into several distinct nonlinear modes, some of which are dynamically stable. The nonlinear modes
are characterized by amplitude and by polarization and come in PT -conjugate pairs.
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Introduction.—The concepts of parity P and time T
symmetries, intensively discussed in the context of non-
Hermitian quantum mechanics since the seminal work [1],
has nowadays acquired great significance in practically all
areas of physics dealing with linear and nonlinear wave
phenomena [2]. The universality of the paradigm, first
recognized in optics [3–5], is based on the mathematical
similarity between the parabolic equation describing light
propagation in various settings and the Schrödinger equa-
tion governing the dynamics of a nonrelativistic quantum
particle. Respectively, the parity and time inversion oper-
ators used in most of the applications had the same form as
those for a spinless quantum particle, i.e., Pψðr; tÞ ¼
ψð−r; tÞ and T ψðr; tÞ ¼ ψ�ðr;−tÞ. From the theoretical
point of view, however, the operators P and T can have a
much more general form [6]. As a matter of fact, various
definitions of the parity operator, which is an involution,
i.e., satisfiesP2 ¼ 1, have already been explored in discrete
optics. For instance, for dimer models the operator P is
tantamount to the σ1 Pauli matrix [4], and in more complex
quadrimer and oligomer models P can be defined as the
Kronecker products of Pauli matrices [2,7,8]. The time
reversal operator T is antilinear and, in quantum mechan-
ics, it is even for bosons, T 2 ¼ 1, and odd for fermions,
T 2 ¼ −1 [9]. However, only the former possibility was
used in all classical applications (i.e., beyond quantum
mechanics) of the non-Hermitian physics.
Non-Hermitian quantum mechanics with odd time

reversal, T 2 ¼ −1, has been brought to the discussion
by a series of works initiated by Refs. [10,11]. The
respective Hamiltonians display interesting properties
(some of them are recalled below) that, however, have
never been explored in other physical applications. This
leads to the first goal of this Letter, which is to introduce an

optical system obeying oddPT symmetry. We illustrate the
utility of such a system with two examples. First, we
propose a coherent optical switch that operates with linear
superpositions of binary states, rather than with single
states, as the conventional switches based on even PT
symmetry do [12]. Second, we describe peculiarities of
nonlinear modes in odd-PT systems, where the non-
linearity is odd-PT symmetric, too.
Let us also recall other recent developments in optics of

media with special symmetries. It was suggested in
Ref. [13] to explore properties of anti-PT -symmetric
optical media that are characterized by dielectric permit-
tivities with εðrÞ ¼ −ε�ð−rÞ and can be realized, say, in
metamaterials. More recently, the experimental realization
of anti-PT -symmetric media in atomic vapors has been
reported in Ref. [14], and other schemes implementing the
idea with dissipatively coupled optical systems have been
designed in Ref. [15]. Practical applications of such media,
however, remain unexplored. Thus, the second goal of this
Letter is to show that an anti-PT -symmetric medium is a
natural physical environment where the odd PT symmetry
can be realized.
Optical coupler with odd PT symmetry.—Consider a

system of two birefringent waveguides, each one with
orthogonal principal axes. To simplify the model, we
neglect a mismatch between propagation constants of the
polarizations inside each waveguide, but take into account a
mismatch 2δ between the propagation constants of the
waveguides: q1;2 ¼ q ∓ δ, where q is the average propa-
gation constant. Let these waveguides be coupled to each
other by an isotropic medium with active and absorbing
domains as schematically shown in Fig. 1. The components
of the guided monochromatic electric fields can be written
as E1 ¼ ½e1A1ðzÞψ1ðrÞ þ e2A2ðzÞψ2ðrÞ�eiðq−δÞz and
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E2 ¼ ½e3A3ðzÞψ3ðrÞ þ e4A4ðzÞψ4ðrÞ�eiðqþδÞz, where r ¼
ðx; yÞ, ej and ψ jðrÞ are the polarization vectors, and the
respective transverse distributions of the modes, AjðzÞ, are
slowly varying field amplitudes that depend on the propa-
gation distance z. The polarization axes in each waveguide
are orthogonal, e1e2 ¼ e3e4 ¼ 0, and in different wave-
guides are mutually rotated by an angle α, ensuring the
relations e1e3¼e2e4¼cosα and e1e4¼−e2e3¼−sinα.
The modes are weakly guided, so that the same polari-
zation properties hold for the fields outside the wave-
guide cores.
Since e1 is orthogonal to e2 and e3 is orthogonal to e4,

the coupling is possible only between one polarization in a
given waveguide and two polarizations in another one.
Such a coupling is determined by the overlapping integrals
κjk ¼ ejek

R
ψ�
jðrÞεðrÞψkðrÞd2r, where j; k ¼ 1;…; 4.

Let the medium in which the waveguides are embedded
be anti-PT -symmetric: εðrÞ ¼ −ε�ð−rÞ. Assuming that
ψ jðrÞ ≈ ψ jðjrjÞ, i.e., the transverse field distribution is
approximately radial, one ensures that κjk ¼ −κ�kj, where
j ¼ 1, 2 and k ¼ 3, 4. To further simplify the model, we
consider the transverse distributions to differ only
by phase mismatches φ and ϑ, according to the
relations ψ1ðrÞeiðφþϑÞ=2 ¼ ψ2ðrÞeiðϑ−φÞ=2 ≡ ψðrþ r0Þ and
ψ3ðrÞeiðφþϑÞ=2 ¼ ψ4ðrÞeiðϑ−φÞ=2 ≡ ψðr − r0Þ, where �r0
are the coordinates of the core centers (see Fig. 1).
Thus, for the coupling coefficients we have κ13 ¼ κ24 ¼
iκ cos α and κ14 ¼ κ�23 ¼ −iκeiφ sin α, where κ ¼
−i

R
ψ�ðr − r0ÞεðrÞψðrþ r0Þd2r is real. If the waveguides

possess Kerr nonlinearity, one can write the system
describing the evolution of the slowly varying amplitudes
A ¼ ðA1; A2; A3; A4ÞT (T stands for transpose) in the
matrix from [16]

i _A ¼ HδA − FðAÞA; Hδ ¼
�

δσ0 iκC

iκC† −δσ0

�
: ð1Þ

Here, σ0 is the 2 × 2 identity matrix, C is the coupling
matrix,

C ¼
�
e−iϑ cos α −eiφ sin α
e−iφ sin α eiϑ cos α

�
; ð2Þ

and the nonlinearity has the form known for birefringent
waveguides [17]:

FðAÞ ¼ diag

�
jA1j2 þ

2

3
jA2j2; jA2j2 þ

2

3
jA1j2;

jA3j2 þ
2

3
jA4j2; jA4j2 þ

2

3
jA3j2

�
: ð3Þ

The main feature of coupler (1), explored below, is that
the coupling matrix C is a real quaternion [16]. Recalling
the known results [10,11], one concludes thatHδ obeys odd
PT symmetry with parity operator P ¼ γ0, where γ0 is the
Dirac gamma matrix, and time reversal T ¼ σ0 ⊗ ðiσ2ÞK,
whereK is the elementwise complex conjugation (note that
iσ2K is the usual time reversal operator for spin-1=2
fermions [9]). The relevant properties of the introduced
operators are P2 ¼ 1, T 2 ¼ −1, ½P; T � ¼ 0, and
½PT ; Hδ� ¼ 0.
We start the analysis of system (1) with the linear limit,

FðAÞ≡ 0. The guided modes are described by the eigen-
value problem b̃ Ã ¼ HδÃ (we use tildes for quantities that
correspond to the linear limit). This problem is readily
solved giving a pair of doubly degenerate eigenvalues,
b̃� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − κ2

p
, each having an invariant subspace

spanned by two PT -conjugate eigenvectors Ãð1Þ
� and

Ãð2Þ
� ¼ PT Ãð1Þ

� :

Ãð1Þ
� ¼

0
BBB@

κeiφ sin α

−κeiϑ cos α
0

iðb̃� − δÞ

1
CCCA; Ãð2Þ

� ¼

0
BBB@

−κe−iϑ cos α
−κe−iφ sin α
iðb̃� − δÞ

0

1
CCCA:

ð4Þ

These vectors are mutually orthogonal: hÃð1Þ
� ; Ãð2Þ

� i ¼ 0,
where hA;Bi ¼ A†B defines the inner product. For some
general properties of odd-PT -symmetric Hamiltonians see
Ref. [10,11].
The odd PT symmetry does not exhaust all the

symmetries of the system. In particular, the unitary trans-
formation H̃ ¼ SHδS−1, where S is the block matrix
defined as S ¼ diagðeiðϑ−φÞσ3=2; e−iðφþϑÞσ3=2Þ results in an
even-PT -symmetric Hamiltonian H̃ with the same P
operator and with conventional “bosonic” time reversal
K: ½H̃;PK� ¼ 0. Additionally, Hδ anticommutes with the
charge conjugation operator C ¼ ðσ1 ⊗ eiσ3ðφ−π=2ÞÞK, this
symmetry being responsible for the eigenvalues b̃�
emerging in opposite pairs that are either real (unbroken
phase, jκj < jδj) or purely imaginary (broken phase,
jκj > jδj) [18].

FIG. 1. Coupled transparent waveguides embedded in an
anti-PT -symmetric medium (see the text for notations).
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Another important property of the odd PT symmetry is
the existence of integrals of motion that can be found even
in the nonlinear case. First, using that PHδP ¼ H†

δ and
PFðAÞP ¼ F†ðAÞ, one straightforwardly verifies [8] that
Q ¼ A†PA is constant: dQ=dz ¼ 0. This conservation law
locks the power imbalance in the waveguides:
Q ¼ P1 − P2 ¼ const, where P1 ¼ jA1j2 þ jA2j2 and
P2 ¼ jA3j2 þ jA4j2. Furthermore, system (1) has a
Hamiltonian structure. Indeed, defining a real-valued
Hamiltonian H ¼ A†P½Hδ − FðAÞ=2�A [16], Eq. (1) can
be rewritten as i _A1;2 ¼ ∂H=∂A�

1;2 and i _A3;4 ¼ −∂H=∂A�
3;4.

Obviously, H is another conserved quantity: dH=dz ¼ 0.
Coherent switch.—Now we turn to examples illustrating

features of the introduced coupler. Returning to the linear
case, we observe that the double degeneracy of eigenstates
is protected by the odd PT symmetry; i.e., the degeneracy
cannot be lifted by any change of the parameters preserving
PT symmetry. Thus, manipulating such a coupler, one
simultaneously affects both the modes with the same
propagation constant. This suggests an idea to perform a
switching between a superposition of binary states, rather
than between independent states as it happens with usual
PT -symmetric switches [12]. We call this device a
coherent switch. Since the mentioned superposition can
be characterized by a free parameter, such a system
simulates a quantum switch for a superposition of states.
However, a solution for the coherent switch is not

straightforward, because of the conservation of Q, which
means that an input signal, applied to only one waveguide,
cannot be completely transferred to another one. Since this
conservation is due to the PT symmetry, the complete
energy transfer between the arms is possible only if the
symmetry is broken by an additional element at some
propagation interval. To this end, we explore the structure
illustrated in Fig. 2: two couplers, with interchanged
mismatches between the propagation constants, i.e., with
δ ↔ −δ in our notations, are connected by two decoupled
waveguides. These auxiliary waveguides have balanced
losses −Γ and gain Γ, and have a mismatch between the
propagation constants, denoted by �δ0. The lengths of the
couplers are equal and chosen as L ¼ π=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − κ2

p
Þ [we

simplify the model letting ϑ ¼ φ ¼ 0]. The decoupled
segment, which disrupts the odd PT symmetry, has the
length l ¼ π=ð2δ0Þ. The propagation in the couplers is
governed by H�δ, and can be expressed through the
evolution operators U�δðz; zþ LÞ ¼ −iH�δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − κ2

p
[16]. The evolution operator of the decoupled segment is
diagonal: U0ðz; zþ lÞ ¼ diagðie−Γl; ie−Γl;−ieΓl;−ieΓlÞ.
Thus, the output (at z ¼ 2Lþ l) and input (at z ¼ 0) fields
are related by

Ãout ¼ U−δðLþ l; 2Lþ lÞU0ðL;Lþ lÞUδð0; LÞÃin:

ð5Þ

The switch is controlled by the gain-and-loss coeffi-
cient Γ. Consider the situation when the input signal is
applied to the first waveguide and has the polarization
Ãin ¼ ðcos χ; sin χ; 0; 0ÞT ; i.e., Ãin is parameterized by a
free parameter χ (the red polarization vector at the input in
Fig. 2). If the waveguides in the central part are
conservative, Γ ¼ 0, then the output signal is detected
only at the first waveguide and arrives π=2 phase shifted:

Ãð0Þ
out ¼ iÃin. If however Γ ¼ Γsw ¼ l−1 lnðδ=κÞ, then the

output signal has a polarization rotated by angle −α and
is detected only in the second waveguide: Ãout ¼
(0; 0; cosðχ − αÞ; sinðχ − αÞ)T (blue polarization vectors
in Fig. 2). Importantly, χ, i.e., the ratio between the
polarization components, remains a free parameter. The
power distributions in the waveguides in the regime of
switching are shown in the lower panel of Fig. 2. Inside
the couplers, both P1;2 grow or decay simultaneously.
However, in the central segment with disrupted odd PT
symmetry the powers are adjusted in such a way that the
complete energy transfer is observed at the output.
Nonlinear modes.—As the second example illustrating

the unconventional features of our system, we consider
peculiarities of modes guided in a nonlinear coupler (1)
with odd-time PT symmetry. Stationary solutions are
searched in the form A ¼ e−ibza, where b is a constant,
and the amplitude vector a solves the algebraic system
ba ¼ Hδa − FðaÞa. Since the nonlinearity is PT sym-
metric [8], i.e., ½PT ; FðaÞ� ¼ 0, the nonlinear modes with
the same propagation constant appear in PT -conjugate
pairs: a and PT a. Thus, the nonlinearity does not lift the
degeneracy, and both PT -conjugate modes are character-
ized by equal total powers P ¼ P1 þ P2 ¼ a†a. The

FIG. 2. The upper panel shows schematically the coherent
switch. Shadowed domains correspond to anti-PT -symmetric
media. The central empty part illustrates the uncoupled wave-
guides with gain and losses. The polarization vectors at the output
indicate (schematically) π=2-phase rotation of the nonswitched
signal (at Γ ¼ 0, red), and switching of the superposition rotated
by angle −α (at Γ ¼ Γsw, blue). The lower panel shows power
distributions in the first P1 (red line) and second P2 (blue line)
arms at Γsw, obtained for δ ¼ δ0 ¼ 2 and κ ¼ 1.
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dependence PðbÞ characterizes a family of modes; distinct
families have different functional dependencies PðbÞ.
Thus, any result for a family PðbÞ discussed below applies
to the pair of PT -conjugate families.
We start by analyzing how the nonlinearity affects linear

modes, i.e., with the weakly nonlinear case. It is known
[7,19] that, in a system with an even PT symmetry without
degeneracy of eigenstates, a linear eigenvalue bifurcates
into a single family of nonlinear modes. But in a system
with odd PT symmetry the situation can be more intricate,
since the eigenvalues are degenerate, and one has to
contemplate the effect of nonlinearity on a linear combi-
nation of independent eigenstates. The latter can be written

as Ãs ¼ sinðνÞÃð1Þ
s þ cosðνÞeiχÃð2Þ

s , where ν and χ are real
parameters and s stands for either “þ” or “−.” Following
Refs. [8,20], we look for a small-amplitude nonlinear mode
in the form of expansions bs ¼ b̃s þ ϵ2βs þ � � �, and

as ¼ ϵÃs þ ϵ3Að3Þ
s þ � � �, where ϵ ≪ 1 is a formal small

parameter. From the ϵ3-order equation we compute [16]

βs ¼ −hFðÃsÞÃ�
s ; Ã

ðjÞ
s i=hÃ�

s ; Ã
ðjÞ
s i, which must be satis-

fied for both j ¼ 1, 2. Additionally, the coefficient βs is
required to be real. These three requirements form the
bifurcation conditions defining the parameters ν and χ for
which bifurcations of nonlinear modes are possible.
Let us analyze the simple case of ϑ ¼ φ ¼ 0 and α ∈

ð0; π=4Þ [α ¼ 0, π=4 correspond to a trivial solution of
parallel polarizations in the coupler arms]. Using computer
algebra, one finds that the bifurcation conditions can be
satisfied for two values of χ. At χ ¼ π=2, nonlinear modes
can bifurcate from the linear limit at ν0 ¼ π=4. These
modes, however, have been found unstable in the entire
range of their existence. A more interesting case is realized
when each b̃s gives birth to two stable families of nonlinear
modes: these correspond to χ ¼ 0 and ν ¼ νs given by

2 tan νs ¼ cs �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ 4

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cs �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ 4

q �
2 þ 4

r
;

where cs ¼ 8δb̃sðδ − b̃sÞ2=½κ4 sinð4αÞ� − 2 tanð2αÞ. Using
this analytical result, we performed numerical continuation
of stable nonlinear modes from the small-amplitude limit to
arbitrarily large amplitudes. An example of the resulting
diagram is shown in Fig. 3(a), where we present two power
curves PðbÞ bifurcating from each eigenvalue b̃þ and b̃−.
Tracing the dynamical stability of the modes along the
power curves, we have found that the families bifurcating
from b̃− are stable in the entire explored range, while both
families from b̃þ are stable for small powers and lose
stability at large amplitudes.
To compute the polarizations of the modes, we notice

that the stable nonlinear modes a bifurcating from the linear
limit are PK invariant, i.e., PKa ¼ a. In our case this
means that entries a1;2 are purely real, and a3;4 are purely
imaginary. Thus, one can construct real-valued polarization

vectors E1 ¼ a1e1 þ a2e2 and E2 ¼ −ia3e3 − ia4e4,
where ej are as defined above (see Fig. 1). Polarization
vectors for several stable nonlinear modes are shown in
Figs. 3(b) and 3(c). For each considered mode, polar-
izations E1 and E2 are nearly, but not exactly, parallel in
both waveguides, and their direction varies slightly as the
propagation constant changes. Thus, the main impact of the
growing total power P is the increase of the moduli of E1

and E2. Figures 3(b) and 3(c) also explain the main
difference between nonlinear modes bifurcating from b̃þ
and b̃−. In the former (latter) case most of the total power is
concentrated in the first (second) waveguide, i.e., P1 > P2

and jE1j > jE2j (P2 > P1 and jE2j > jE1j).
Figure 4(a), where the dependencies P vs κ are plotted

for a fixed propagation constant, illustrates the transforma-
tions of modes at the growing coupling strength κ. Four
shown branches merge pairwise as κ increases (each

FIG. 3. (a) Families of solutions for δ ¼ 2, κ ¼ 1, α ¼ π=6,
ϑ ¼ φ ¼ 0 visualized as dependencies P vs b. We show two
families bifurcating from each eigenvalue b̃þ and b̃−. Stable and
unstable modes are represented by solid and dotted segments,
respectively. Vertical dotted lines indicate values b ¼ 0 and
b ¼ −6 analyzed in (b) and (c) and Fig. 4. (b) Polarization
vectors E1;2 in each waveguide for two stable nonlinear modes
bifurcating from b̃þ, at b ¼ 0. Arrows corresponding to the same
mode have the same color as the respective family (and the same
arrow head). (c) Polarization vectors E1;2 for two stable modes
bifurcating from and b̃−, at b ¼ −6. The lengths of arrows E1;2

are equal to powers P1;2 in each arm.

FIG. 4. (a) Branches of nonlinear modes for fixed b ¼ −6,
δ ¼ 2, and changing κ. Stable and unstable modes are represented
by solid and dotted segments, respectively. The vertical dotted
line indicates the PT -symmetry-breaking threshold κ ¼ 2.
Panels (E1) and (E2) show polarization vectors corresponding
to two merging branches (red and green curves) from (a).
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solution bifurcating from the positive eigenvalue b̃þ merges
with some solution from b̃−). Remarkably, the branches
coalesce above the PT -symmetry-breaking threshold
κPT ¼ δ [which is equal to 2 in Fig. 3(b)]. Moreover,
solutions can be stable above the PT -symmetry-breaking
point; in Figs. 3(a) and 3(b) stable modes are shown with
solid lines. The polarization vectors of the nonlinear modes
strongly depend on the coupling constant κ. This is
illustrated in Figs. 4(E1) and 4(E2) where the heads of
vectors E1;2 describe 3D curves in the ðκ; x; yÞ space.
To conclude, we have introduced a PT -symmetric

optical coupler with odd-time reversal. The system features
properties of an anti-PT -symmetric medium in which two
birefringent waveguides are embedded. As examples of
applications, we described a coherent switch that operates
with a linear superposition of binary states with one free
parameter. As the second example, we report on bifurca-
tions of families of nonlinear modes. An unusual obser-
vation was that each linear eigenstate gives rise to several
distinct nonlinear modes, some of which are stable.
Although we dealt with an optical model, the architecture
of PT -symmetric systems is generic and can be imple-
mented in other physical systems.
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