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We report accurate quantum Monte Carlo calculations of nuclei up to A ¼ 16 based on local chiral two-
and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties
associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices
in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are
rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral
interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give
an excellent description of binding energies, charge radii, and form factors for all these nuclei, including
open-shell systems in A ¼ 6 and 12.
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Introduction.—Predicting the emergence of nuclear
properties and structure from first principles is a formidable
task. An important open question is whether it is possible to
describe nuclei and their global properties, e.g., binding
energies and radii, from microscopic nuclear Hamiltonians
constructed to reproduce only few-body observables, while
simultaneously predicting properties of matter, including
the equation of state and the properties of neutron stars.
Despite advanced efforts, definitive answers are not yet
available [1–9].
Several properties of nuclei up to 12C have been

successfully described using the phenomenological
Argonne v18 (AV18) nucleon-nucleon (NN) potential
combined with Illinois models for the three-body inter-
actions [5]. Unfortunately these phenomenological models
have at least two main limitations. They do not provide a
systematic way to improve the interactions or to estimate
theoretical uncertainties. In addition, they provide a too soft
equation of state of neutron matter [10,11], with the
consequence that the predicted structure of neutron stars
is not compatible with recent observations of two solar-
mass stars [12,13].
The Argonne-Illinois models have been constructed to

be nearly local: The dominant parts of the interaction do not
depend on the momenta of the two interacting nucleons but
only on their relative distance, spin, and isospin. This
construction was motivated by the ease of employing such
potentials in continuum quantum Monte Carlo (QMC)
methods, such as the Green’s function Monte Carlo
(GFMC) and auxiliary field diffusion Monte Carlo

(AFDMC) methods. The advantage of QMC methods is
that they can be used to solve accurately and nonperturba-
tively the many-body problem without requiring the use of
softer Hamiltonians. The GFMC and AFDMCmethods can
be successfully used only for nearly local Hamiltonians
because of the sign problem [5].
In the last two decades, chiral effective field theory

(EFT) has paved the way to the development of nuclear
interactions and currents in a systematic way [14,15].
Chiral EFT expands the nuclear interaction in the ratio
of a small scale (e.g., the pion mass or a typical momentum
scale in the nucleus) to a hard scale (the chiral breakdown
scale). Such an expansion provides several advantages over
the traditional approach, including the ability to improve
the interaction order by order, means to estimate theoretical
uncertainties, and the fact that many-body forces and
currents are predicted consistently. The long-range pion-
exchange contributions are determined by pion-nucleon
couplings, while the short-range contributions (given by
so-called low-energy constants) are fit to reproduce exper-
imental data. Usually, chiral EFT interactions are formu-
lated in momentum space, but recently Gezerlis et al.
demonstrated a way to produce equivalent local formula-
tions of chiral NN interactions up to next-to-next-
to-leading-order (N2LO) [16,17]. Consistent three-body
forces were constructed in Refs. [18–20], as well as chiral
interactions with explicit Delta degrees of freedom [21–24].
To solve for the ground state of nuclei, we use the

AFDMC method with local chiral interactions that have
been determined from fits to NN scattering, the alpha
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particle binding energy, and n-α scattering [19,20]. This
method has previously been used to determine the proper-
ties of homogeneous and inhomogeneous neutron matter
[25–28], and nuclear matter and finite nuclei using simpli-
fied potentials [29].
In this Letter we present several new important achieve-

ments: (i) the first application of the AFDMC method to
calculate properties of nuclei using chiral Hamiltonians at
N2LO, including three-body forces, (ii) a systematic
investigation of the chiral expansion, including truncation
error estimates, in selected nuclei from A ¼ 3 to A ¼ 16,
and (iii) an investigation of the cutoff dependence and the
use of different three-body operators for A ≥ 6.
Hamiltonian and AFDMC method.—The Hamiltonian is

of the form

H ¼ −
ℏ2

2m

X

i

∇2
i þ

X

i<j

vij þ
X

i<j<k

Vijk; ð1Þ

where the two-body interaction vij also includes Coulomb
and other electromagnetic effects. The two-body potentials
vij and three-body potential Vijk are as in Refs. [16–20].
The general form of the variational state is the following:

jΨi ¼ ½FC þ F2 þ F3�jΦiJ;T ; ð2Þ
where FC accounts for all the spin- and isospin-
independent correlations, and F2 and F3 are linear in spin-
and isospin-pair two- and three-body correlations as
described in Ref. [5].
The term jΦi is taken to be a shell-model-like state with

total angular momentum J and total isospin T. Its wave
function consists of a sum of Slater determinants D
constructed using single-particle orbitals:

hRSjΦiJ;T ¼
X

n

cn

�X
Dfϕαðri; siÞg

�

J;T
; ð3Þ

where ri are the spatial coordinates of the nucleons and si
represent their spins. Each single particle orbital ϕα consists
of a radial function φðrÞ coupled to the spin and isospin
states. The determinants are coupled with Clebsch-Gordan
coefficients to total J and T, and the cn are variational
parameters multiplying different components having the
same quantum numbers. The radial functions φðrÞ are
obtained by solving for the eigenfunctions of a Wood-
Saxon well, and all parameters are chosen by minimizing
the variational energy as described in Ref. [30]. In order to
improve jΦi, we include single particle orbitals up to the
sd shell.
A complete description of the AFDMC method using

two-body interactions is given in Refs. [5,31]. Here we
describe how three-body interactions are included. The
main limitation of the AFDMC method is that the standard
Hubbard-Stratonovich transformation used to propagate the
wave function in imaginary time can only be applied to

potentials that are quadratic in spin and isospin operators.
The three-body coordinate-space dependence is straightfor-
ward to include, as are several important terms in the three-
body interaction that depend on the spin and isospin of two
nucleons at a time. Terms depending on the spin and
isospin of all three nucleons are included in an effective
way in the propagation, and then fully accounted for in the
final results. In practice, we determine a Hamiltonian H0
that mimics the full Hamiltonian, as discussed in
the following, and then we calculate as a perturbation
the difference hH0 −Hi. This procedure goes beyond the
standard normal ordering that averages the dependence of
the third nucleon’s position, spin, and isospin.
The chiral three-body interactions at N2LO contain terms

that can be organized as

V ¼ V2π;P
a þ V2π;P

c þ V2π;S þ VD þ VE: ð4Þ
The first, second, and third terms correspond to the two-
pion exchange diagrams in P and S waves [Eqs. (A.1b),
(A.1c) and (A.1a), respectively, of Ref. [20]]. The sub-
scripts a and c refer to the fact that these contributions can
be written in terms of an anticommutator or commutator,
respectively. We can rewrite V2π;P

a;c by separating it into
long-, intermediate-, and short-range parts:

V2π;P
a;c ¼ VXX

a;c þ VXδ
a;c þ Vδδ

a;c; ð5Þ
where X and δ refer to the XijðrÞ and δR3N

ðrÞ functions
defined in Ref. [20]. VD contains an intermediate-range
one-pion–exchange–contact interaction [Eq. (24b) of
Ref. [20] ], while VE contains a short-range term. In this
work, we consider two alternative forms for VE: namely,
VEτ and VE1 [Eqs. (26a) and (26b), respectively, of
Ref. [20]]. They differ in the operator structure, according
to the Fierz-rearrangement freedom in the selection of local
contact operators in the three-body sector up to N2LO [32].
Eτ refers to the choice of the two-body operator τi · τj,
while E1 to the choice of the identity operator 1.
The terms V2π;P

a , V2π;S, VD, and VE are purely quadratic
in spin and isospin operators, and can be included exactly
in the AFDMC propagator. The term V2π;P

c contains instead
explicit cubic spin and isospin operators. These terms cannot
be fully included in theAFDMCpropagation; however, their
expectation value can be calculated. We determine the
Hamiltonian H0 that can be fully propagated as

H0 ¼ H − V2π;P
c þ α1VXX

a þ α2VD þ α3VE: ð6Þ
The three constants αi are adjusted in order to have

hVXX
c i ≈ hα1VXX

a i;
hVXδ

c i ≈ hα2VDi;
hVδδ

c i ≈ hα3VEi; ð7Þ
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where the identifications are suggested by the similar ranges
and functional forms. The average h� � �i indicates an average
over the propagated wave function. Once the ground stateΨ
ofH0 is calculatedwith theAFDMCmethod, the expectation
value of the Hamiltonian H is given by

hHi ≈ hΨjH0jΨi − hΨjH0 −HjΨi; ð8Þ

where the last quantity in the previous expression is
evaluated perturbatively. Adjusting the constants αi in such
away that the correction is small suggests that the correction
is perturbative. The same estimate is used in GFMC
calculations to determine the small contributions from
nonlocal terms that are present in the AV18 potential, and
in that case the difference v08 − v18 is calculated as a
perturbation [33].
In order to test the technique described above, we first

determined the optimal parameters αi for a given system,
then changed their values by up to 10%, and verified that
the final result of hHi is nearly independent of such a
variation. For example, for 16O such a variation changes
hH0 −Hi from ≈1 to ≈15 MeV, but the final estimate of
the ground-state energy is within 2 MeV. In addition, we
benchmarked the energies of A ¼ 3 and A ¼ 4 nuclei using
the AFDMCmethod, by comparing with the GFMC results
of Refs. [19,20], where the three-body interactions are
included fully in the propagation and found very good
agreement within a few percent. Note that in many other
approaches the three-body force is replaced by an effective
two-body interaction (this is achieved by normal ordering)
neglecting the residual three-body term [34,35]. However,
this approximation has only been benchmarked for softer
interactions [36,37].
The AFDMC method used here is limited by a sign

problem [29,31]. The sign problem is initially suppressed
by evolving the wave function in imaginary time using the
constrained-path approximation, where the configurations
are constrained to have positive real overlap with the trial
function, as described in Ref. [38]. After an initial equili-
bration of the configurations using the constrained-path
approximation, the constraint is removed, and then the
evolution in imaginary-time is performed until the sign-
problem dominates and the variance of the results becomes
severely large. The final (statistical) error strongly depends
on the quality of the trial wave function. We have made
several tests to check the results and the dependence on the
initial trial wave function, and have concluded that the
systematic uncertainties due to releasing the constraint give
results correct to ∼5% for 16O. Initial attempts to improve
the wave function for 16O show a lowering of the energy by
about 4–5MeV, but since the computational cost is much
higher and statistical errors are similar to this difference, we
leave more detailed studies to future work.
Results.—We consider chiral Hamiltonians at leading-

order (LO), next-to-leading order (NLO), and N2LO. In this

way, following Ref. [39], we can assign theoretical uncer-
tainties to observables coming from the truncation of the
chiral expansion. Uncertainties for an observable X are
estimated as ΔXN2LO ¼ maxðQ4 × jXLOj; Q2 × jXNLO−
XLOj; Q × jXN2LO − XNLOjÞ, where we take Q ¼ mπ=Λb
with Λb¼ 600 MeV (see Ref. [20] for a detailed discussion
on uncertainty estimates with local chiral interactions).
In Table I we report the AFDMC results for the ground-

state energies and charge radii for nuclei with A ≥ 6 at
N2LO. In particular, we used the two different cutoffs R0 ¼
1.0 and R0¼ 1.2 fm (approximately corresponding to cut-
offs in momentum space of 500 and 400 MeV [20], note,
however, also Ref. [40]), and two of the three available VE
interactions constructed in Ref. [19]. We find that, starting
from local chiral Hamiltonians fit toNN scattering data [17]
and three-body interactions fit to light nuclei [19,20],
energies and radii for nuclei up to A ¼ 16 are qualitatively
well reproduced. In particular, we find that the two cutoffs
employed here,R0 ¼ 1.0 andR0¼ 1.2 fm, reproduce exper-
imental binding energies and charge radii up toA ¼ 6within
a few percent. An exception is for the charge radius of 6Li
that is slightly underestimated for both cutoffs. Sizably
different is the case of the softer interaction ðR0 ¼ 1.2 fmÞ
for larger systems, which can significantly overbind 16O,
resulting in a very compact system. In this case the
theoretical uncertainties on the energy are large, dominated
by the severe overbinding at LO (≈ − 1110 MeV).
We also find that the two different forms (Eτ, E1) for the

three-body interaction give similar results (agreeing within
the EFT uncertainty) for nuclei up to A ¼ 16. This suggests
that the theoretical uncertainties coming from the trunca-
tion of the chiral expansion are sufficient to account for the
violation of the Fierz rearrangement [19,45].

TABLE I. Ground-state energies and charge radii for A ¼ 6, 12,
and 16 obtained for the N2LO interactions with different cutoffs
R0 and different three-body interactions. The first uncertainty
listed is statistical while the second is systematic. Experimental
results are also shown.

Nucleus VE, R0 (fm) EAFDMC (MeV) rch (fm)

6He Eτ, 1.0 −28.4ð4Þð2.0Þ 1.99(4)(8)
E1, 1.0 −28.2ð5Þð1.9Þ 2.01(4)(7)
Eτ, 1.2 −29.3ð1Þð1.8Þ 1.92(4)(8)
Exp −29.3 2.068(11) [41]

6Li Eτ, 1.0 −31.5ð5Þð2.3Þ 2.33(4)(10)
E1, 1.0 −30.7ð4Þð2.1Þ 2.33(4)(10)
Eτ, 1.2 −32.3ð3Þð1.7Þ 2.24(4)(6)
Exp −32.0 2.589(39) [42]

12C Eτ, 1.0 −78ð3Þð9Þ 2.48(4)(18)
Exp −92.2 2.471(6) [43]

16O Eτ, 1.0 −117ð5Þð16Þ 2.71(5)(13)
E1, 1.0 −115ð6Þð15Þ 2.72(5)(11)
Eτ, 1.2 −263ð26Þð56Þ 2.17(5)(11)
Exp −127.6 2.730(25) [44]
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In Fig. 1 we present the ground-state energies per
nucleon of selected nuclei with 3 ≤ A ≤ 16, calculated at
LO, NLO, and N2LO ðEτÞwith the cutoff R0¼ 1.0 fm. The
error bars are estimated by including the statistical uncer-
tainties given by the AFDMC calculations as well as the
error given by the truncation of the chiral expansion. The
ground-state energies per nucleon are in agreement with
experimental data up to A ¼ 6, while for 12C and 16O the
energies are somewhat underpredicted. The uncertainties
are reasonably small, dominated by the truncation error.
In Fig. 2 we compare the charge radii calculated at LO,

NLO, and N2LO ðEτÞ with the R0¼ 1.0 fm cutoff to
experimental data. These results show that a qualitative
description of binding energies and charge radii is possible
starting from Hamiltonians constructed using only few-
body data. We note, however, that the radius of 6Li
is slightly smaller than the experimental measurement.

It is interesting to note that the charge radius of 6Li
calculated with the GFMC method employing the AV18
and Illinois VII (IL7) three-body interactions is also
underestimated [5].
We show in Fig. 3 the charge form factors of 12C and 16O

compared to experimental data. The 12C form factor is also
compared to previous GFMC calculations with the
AV18þ IL7 potentials. Our form factor calculations have
been performed using one-body charge operators only.
Two-body operators are expected to give small contribu-
tions only at momenta larger than ≈500 MeV [46,47], as
they basically include relativistic corrections. It is interest-
ing to compare the curves given by the two different
cutoffs. In the figure, the result obtained using R0¼ 1.0 fm
at N2LO ðEτÞ (solid blue line) includes the uncertainty
from the truncation of the chiral expansion (shaded blue
area). The agreement with experimental data is very good.
For R0¼ 1.2 fm at N2LO ðEτÞ (dotted red line), the radius
is too small and the first diffraction minimum occurs at a
significantly higher momentum than experimentally
observed, consistent with the overbinding obtained for this
interaction.
Finally, in Fig. 4 we present the Coulomb sum rules for

12C and 16O. The AFDMC result for 12C is compatible both
with the available experimental data as extracted in Ref. [51]
and with the GFMC result for AV18þ IL7 [46]. The
differences between the AFDMC and GFMC results at high
momentum are due to two-body currents, fully implemented
to date only in the GFMC calculations. For 16O, the result for
the harder interaction with R0¼ 1.0 fm is very close to that

FIG. 1. Ground-state energies per nucleon for 3 ≤ A ≤ 16 up to
N2LO ðEτÞ with the R0¼ 1.0 fm cutoff. Smaller error bars
(indistinguishable from the symbols up to A ¼ 6) indicate the
statistical Monte Carlo uncertainty, while larger error bars are the
uncertainties from the truncation of the chiral expansion.

FIG. 2. Charge radii for 3 ≤ A ≤ 16 up to N2LO ðEτÞ with the
R0¼ 1.0 fm cutoff. Error bars are as in Fig. 1.

FIG. 3. Charge form factor for 16O at N2LO for R0 ¼ 1.0 and
1.2 fm compared to experimental data [44,48,49]. For
R0¼ 1.0 fm, both Eτ and E1 three-body operators give consistent
results. The shaded area indicates the statistical Monte Carlo
uncertainty combined with the (dominant) uncertainty from the
truncation of the chiral expansion. For 12C, AFDMC results are
shown in the inset for R0¼ 1.0 fm versus experimental data from
Ref. [50] and the GFMC results employing the AV18þ IL7
potentials [46].
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of 12C, and is compatible with the findings of Ref. [52]
for the AV18þ UIX potential. The softer interaction with
R0¼ 1.2 fm produces instead a significantly different result,
as for the charge form factor.
Summary.—We have performed QMC calculations of

selected nuclei up to A ¼ 16 using local chiral interactions
at LO, NLO, and N2LO for different cutoffs and three-body
interactions. We conclude that these Hamiltonians, con-
structed only from NN data and properties of few-body
nuclei, can give a good description of ground-state proper-
ties of nuclei up to A ¼ 16, including binding energies,
charge radii, form factors, and Coulomb sum rules. This is
true in particular for the harder interaction considered here,
corresponding to coordinate-space cutoff R0¼ 1.0 fm. For
the larger cutoff R0¼ 1.2 fm, we find in 16O a strong
dependence of the energy uncertainty coming from the
truncation of the chiral expansion, and a large overbinding
and compactness. The latter two could be a consequence of
the large cD coupling in the Eτ parametrization of the three-
body force [19], resulting in a sizable attractive contribu-
tion not present in the hard interaction ðcD ¼ 0Þ. More
detailed analysis to further investigate this behavior will be
performed in future works.
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