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The main decay channels of the anomalous low-energy 3=2þð7.8� 0.5 eVÞ isomeric level of the 229Th
nucleus, namely the γ emission and internal conversion, inside a dielectric sphere, dielectric thin film, and
conducting spherical microcavity are investigated theoretically, taking into account the effect of media
interfaces. It is shown that (1) the γ decay rate of the nuclear isomer inside a dielectric thin film and
dielectric microsphere placed in a vacuum or in a metal cavity can decrease (increase) in dozen of times,
(2) the γ activity of the distributed source as a function of time can be nonexponential, and (3) the metal
cavity, whose size is of the order of the radiation wavelength, does not affect the probability of the internal
conversion in 229Th, because the virtual photon attenuates at much shorter distances and the reflected wave
is very weak.
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The change of the spontaneous emission probability of
atoms and molecules due to electromagnetic boundary
conditions was first predicted by Purcell in 1946 [1]. At
present, this phenomenon is well studied both theoretically
[2–7] and experimentally (see for example [8–12]). In
nuclear physics, a similar effect was observed in the nuclear
forward scattering process at the 57Feð3=2−; 14.4 keVÞ
nuclear level [13]. However, it is difficult to observe the
Purcell effect in the decay of nuclear states since energies of
nuclear transitions are large in comparison with optical
atomic transitions, and penetrating γ radiation is practically
not reflected at the boundary of two different media, and
also, the dominant decay channel of the low energy nuclear
states is internal conversion (IC), rather than γ radiation.
Nevertheless, there is one exception. As early as 1976,

Kroger and Reich established the existence of a low-lying
nuclear excited state with the spin 3=2þ in 229Th through
the γ ray spectroscopy following the α decay of 233U [14].
In 1990, Reich and Helmer analyzed, in detail, the energies
and intensities of γ transitions in the 229Th in a similar
experiment, found that the first excited state in 229Th has an
extremely low energy of Eis ¼ 1� 4 eV [15]. Four years
later, the energy range was narrowed to Eis ¼ 3.5� 1.0 eV
[16]. In spite of this, precise measurements by Beck et al.
[17] performed in 2007 yielded Eis ¼ 7.8� 0.5 eV. The
latest data [18], based on the direct detection of the IC
electrons, result in 6.3 eV ≤ Eis ≤ 18.3 eV.
Since its discovery, the low-lying 3=2þ nuclear state in

229Th has attracted great interest of researchers. A number
of limitations on the possible values of its energy and half-
life was established in works [19–23]. The most detailed

conditions of this kind were obtained in [24] by the direct
excitation of the 229Th nuclei and the detection of photons
in a crystal with a large band gap (this effect was predicted
in [25,26]). Nowadays several promising crystals have been
found and studied intensively [27–30]. Another popular
trend is to use ion traps [31–33]. Here, it is worth
mentioning the highly effective excitation of the thorium
isomer through the inverse electronic bridge, which was
first proposed in [34] and studied later in [35].
The most important applications for all of these studies

are possibly the creation of a laser working on the nuclear
transition [36], and a high precision nuclear clock
[31,33,37,38]. The successful implementation of these
two points will lead to a technological breakthrough with
far-reaching consequences for various fields of science and
technology. Among the interesting possibilities, one can
note the relative effects of the variation of the fine structure
constant e2 and the strong interaction parameter mq=ΛQCD
[39], the inversion of the sublevels and decay of the ground
state of the nucleus into the isomeric state in the muonic
atom 229Th [40], the α decay of the low-lying level [41] and
the acceleration of the 229Th nucleus α decay rate by laser
radiation, and some other applications.
In this Letter, we study the change in the decay rate of the

first excited state of the 229Th nucleus when electromag-
netic boundary conditions are applied to the studied system.
Since for the photon energy range ω ¼ Eis ¼ 7.8� 0.5 eV
there exist transparent crystals and metals effectively
reflecting the radiation with the wavelength λ ¼ 2π=ω ≈
160 nm (here and below we use the system of units with
ℏ ¼ c ¼ 1), it should be possible for the first time to
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control the decay of a nuclear state in the sameway as in the
case of optical atomic transitions [8,9]. Here we consider
the following four cases of the 229Th isomer decay: (a) in a
dielectric sphere surrounded by vacuum, (b) in a dielectric
sphere placed in a metal cavity. (c) in a dielectric thin film
deposited on a semiconductor, and (d) in a spherical
metallic microcavity. In the cases (a), (b), and (c), the γ
radiation is considered in a large band gap dielectric, where
the IC is forbidden [25,26]. In the case of (d), we are
concerned with the effect of the reflecting spherical metal
surface on the IC process.
Gamma emission in the dielectric sphere.—The nuclear

transition current Jðt; r0Þ ¼ e−iωtJðr0Þ creates a vector
potential Aðt; r0Þ ¼ e−iωtAðr0; kÞ, in which the field
Aðr0; kÞ obeys the equation ðΔr0 þk2ÞAðr0;kÞ¼−4πJðr0Þ,
where k ¼ ffiffiffi

ε
p

ω, and ε is the dielectric constant of the
medium. (In the following, the field in the region of space
with the permittivity ε1ð2Þ will be denoted by the wave
number index k1ð2Þ ¼ ffiffiffiffiffiffiffiffiffi

ε1ð2Þ
p

ω.) The solution to this equa-
tion in the region occupied by the dielectric sphere can be
written in the form

Aðr; k1Þ ¼
Z

½Dðr; r0; k1Þ þ D̃ðr; r0; k1Þ�Jðr0Þd3r0; ð1Þ

where the Green function obeys the inhomogeneous
Helmholtz equation [42] ðΔrþk21ÞDðr;r0;k1Þ¼Iδð3Þðr−r0Þ.
D̃ðr; r0; k1Þ in Eq. (1) stands for a boundary term [42]. This
function is a solution of the analogous homogeneous
equation, and provides the necessary boundary conditions
for Aðr; k1Þ.
The Green function Dðr; r0; k1Þ can be expanded in

multipoles [42]

Dðr; r0; k1Þ ¼ 4πik1
X
J;M

X
a¼e;m

Ba
JMðr; k1ÞAa�

JMðr0; k1Þ;

where Ae;m
JM and Be;m

JM are the vector potentials of the
electric (e) and magnetic (m) types Ae

JMðx; kÞ ¼P
ν¼�1ð−1Þ1−ν=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½J þ ð1 þ νÞ=2�=ð2J þ 1Þp
jJ−νðkxÞ ×

YJ−ν
JM ðΩxÞ, Am

JMðx; kÞ ¼ jJðkxÞYJ
JMðΩxÞ, Be;m

JM ðx; kÞ ¼
Ae;m

JM ðx; kÞ with jJðkxÞ → hð1ÞJ ðkxÞ. Here, jJðkxÞ and

hð1ÞJ ðkxÞ are the spherical Bessel function and spherical
Hankel function of the first kind, respectively, YL

JMðΩÞ ¼P
m;σC

JM
Lm1σYLmðΩÞeσ stands for the vector spherical har-

monics, YLmðΩÞ is the scalar spherical harmonic, CJM
Lm1σ is

the Clebsch-Gordan coefficient, and eσ is the spherical
basis vector [43].
The function D̃ðr; r0; k1Þ must be regular at r ¼ 0 and

r0 ¼ 0 and symmetric in r ↔ r0. Therefore [42],

D̃ðr; r0; k1Þ ¼ 4πik1
X
J;M

X
a¼e;m

Ra
JA

a
JMðr; k1ÞAa�

JMðr0; k1Þ;

whereRa
J is the reflection coefficient that must be chosen to

satisfy the boundary conditions at the sphere at r ¼ R.

The field Aðr; k2Þ outside the dielectric sphere is a
divergent spherical wave. It can be written in the form
analogous to Eq. (1) with the Green function [5]

Dðr;r0; k2; k1Þ ¼ 4πik1
X
J;M

X
a¼e;m

T a
JB

a
JMðr; k2ÞAa�

JMðr0; k1Þ;

where T a
J is the transmission coefficient.

Using the multipole expansions for Dðr; r0; k1Þ,
D̃ðr; r0; k1Þ, and Dðr; r0; k2; k1Þ, we can write the fields in
the form Aðr; k1ð2ÞÞ ¼

P
J;M

P
a¼e;m Aa

JMðr; k1ð2ÞÞ. The
isomeric nuclear transition 3=2þð7.8 eVÞ → 5=2þð0.0Þ in
the 229Th nucleus is a magnetic dipole (M1) transition with a
negligible E2 component [44] [even for the magnitude
of the reduced probability of the E2 nuclear transition
BW:u:ðE2Þ ≃ 100, the probabilities of theE2 andM1 photon
emission obey the relation WγðE2Þ=WγðM1Þ ≲ 10−9].
Therefore, in the sums over the multipoles, we can leave
the term corresponding to themagnetic vector potential with
a fixed value of J and obtain

Am
JMðr; k1Þ ¼ ½hð1ÞJ ðk1rÞ þRm

J jJðk1rÞ�YJ
JMðΩrÞhN m

JMi
Am

JMðr; k2Þ ¼ T m
J h

ð1Þ
J ðk2rÞYJ

JMðΩrÞhN m
JMi; ð2Þ

where we have used the notation hN m
JMi ¼ 4πik1×R

Am�
JMðr0; k1Þ · Jðr0Þd3r0. The electric and magnetic fields

corresponding to the potentials Am
JMðr; k1;2Þ are defined as

Em
JMðt;r;kÞ¼iωAm

JMðt;r;kÞ, Bm
JMðt; r; kÞ ¼ ikAe

JMðt; r; kÞ.
The reflection coefficient Rm

J , which has the form [5]

Rm
J ¼

ffiffiffiffiffi
ε1

p
ξ0Jðρ1ÞξJðρ2Þ −

ffiffiffiffiffi
ε2

p
ξJðρ1Þξ0Jðρ2Þffiffiffiffiffi

ε2
p

ψJðρ1Þξ0Jðρ2Þ −
ffiffiffiffiffi
ε1

p
ψ 0
Jðρ1ÞξJðρ2Þ

; ð3Þ

obtained from the boundary conditions for the tangential
components of electric andmagnetic fields at themedia inter-
face, Em

JMk ðR;k1Þ¼Em
JMk ðR;k2Þ, Bm

JMk ðR;k1Þ¼Bm
JMk ðR;k2Þ.

In Eq. (3), ψJðxÞ ¼ xjJðxÞ and ξJðxÞ ¼ xhð1ÞJ ðxÞ are the
Riccati-Bessel functions, ρ1ð2Þ ¼ k1ð2ÞR.
The Purcell factor fP is the ratio of the transition

probability from a source located near the interface and
the probability in an infinite medium. For theM1 radiation
source located at the center of the sphere, the Purcell factor
is calculated by the formula [6]:

fM1
P ¼ 1þ Re½Rm

1 �: ð4Þ
In addition, using the reflection coefficient, the correspond-
ing frequency shift can also be estimated from the relation
Δω=ΓM1

γ ¼ Im½Rm
J �=2 [6], where ΓM1

γ is theM1 γ emission
probability in an infinite medium.
The influence of the boundary conditions on the

M1ð7.8 eVÞ γ transition is demonstrated in Figs. 1–2.
As a host, we consider a crystal with a band gap larger than
ω. This can be, for example, LiSrAlF6, which is easily
doped with 229Th and has the refractive index n ¼ ffiffiffi

ε
p

≈
1.4–1.5 at ω ≈ 8 eV. For Al, we obtain ε ¼ −2.8þ i0.30 at
ω ≈ 8 eV [45].

PHYSICAL REVIEW LETTERS 120, 122501 (2018)

122501-2



As follows from Figs. 1(a)–2(a), the γ emission proba-
bility can vary by a factor of 1.5 due to the presence of the
LiSrAlF6/vacuum boundary. If a dielectric sphere is placed
in the Al cavity, the decay rate can vary by a factor of 50–60.
This is a consequence of the high reflectivity of aluminum at
ω ¼ 8 eV. As for the normalized frequency shift, its value
oscillates as a function of R=λ in the range jΔω=ΓM1

γ j ≤ 0.2
for a dielectric sphere in a vacuum, and in the range
jΔω=ΓM1

γ j ≤ 10 for a dielectric in a cavity of metallic Al.
The present consideration can be easily generalized to

the case of a dielectric microsphere filled with 229Th with
the distribution nðr0NÞ. To calculate the radiation probability
(4) in the case when the nucleus is located at a distance
0 < r0N < R from the center of the sphere, the current in the
form Jðr0Þ ¼ J0δðr0 − r0NÞ is substituted in Eq. (1).
Following the work of [2–4,7], we obtain formulas for
the Purcell factors for a magnetic dipole oriented in the
radial (⊥) and tangential (k) directions

fM1
P⊥ ¼ 1þ 3

2

X∞
J¼1

JðJþ 1Þð2Jþ 1Þj
2
JðyÞ
y2

Re½Rm
J �;

fM1
Pk ¼ 1þ 3

4

X∞
J¼1

ð2Jþ 1Þ
�
ψ 0
J
2ðyÞ
y2

Re½Rm
J � þ j2JðyÞRe½Re

J�
�
;

where y ¼ k1r0N ,R
e
J is the reflection coefficient for electric

multipoles (TM mode), which is connected withRm
J by the

relationRe
J ¼ Rm

J with ε1;2 → ε2;1. When r0N → 0, only the
termwith J ¼ 1 remains in the sum, andwe arrive at Eq. (4).
The total Purcell factor fM1

P ¼ ð1=3ÞfM1
P⊥ þ ð2=3ÞfM1

Pk
depends on the distance to the center of the sphere r0N .
Accordingly, the γ decay of nuclei located in the different
spherical layers occurs at different rates. The detector, in
turn, measures the decay activity QðtÞ from the entire
source:

QðtÞ ¼
Z
V
λðr0NÞnðr0NÞe−λðr0NÞtdV; ð5Þ

where λðr0NÞ ¼ fM1
P ðr0NÞλ0 is the decay constant of the nuclei

placed in the corresponding spherical layer, λ0 ¼ ΓM1
γ , and

nðr0NÞ is the density of the nuclei distribution. The presence
of the Purcell factor in the exponent in Eq. (5) means that the
averaged activity as a function of time can differ markedly
from the exponential one (see below).
To get an idea of the decay rate in a distributed source at

the initial time, one can average the Purcell factor over the
volume of the dielectric sphere V. The averaging of fM1

P is
carried out using the uniform distribution of sources
nðr0NÞ ¼ ð4πR3=3Þ−1. Integration

R
V f

M1
P ðr0NÞnðr0NÞd3r0N

(see Ref. [4] for details) gives the following formula for
the normalized average decay probability at t ¼ 0

hfM1
P i ¼ 1þ 3

4

X∞
J¼1

ð2Jþ 1Þ
�
ðj2Jðρ1Þ− jJ−1ðρ1Þ

× jJþ1ðρ1ÞÞRe½Re
J�þ

�
j2J−1ðρ1Þ−

2J− 1

ρ1

× jJ−1ðρ1ÞjJðρ1Þþ
ρ21− 2J
ρ21

j2Jðρ1Þ
�
Re½Rm

J �
�
: ð6Þ

An example of a calculation is given in Figs. 1–2. The
main feature of Fig. 1 is the appearance of narrow high
peaks. They emerge as a result of the total internal
reflection of the electromagnetic waves emitted parallel
to the media interface by the sources placed near the
interface. The corresponding standing waves create strong
electromagnetic fields at certain locations inside the dielec-
tric sphere, which lead to the acceleration of the isomeric
nuclei decay. The peaks disappear if the refractive index of
the dielectric medium surrounding the sphere satisfies the
condition n2 > n1. Note that this situation is very similar to
the E1 atomic radiation in water drops of micron size
described in detail in Ref. [4].
Gamma emission in the dielectric thin film.—Let us

consider the decay of the 229Th nuclei, which can be excited
in a laser plasma [44] and implanted in the form of the Th
ions into the thin (with the width d0 ≃ 10 nm) SiO2 film
(the band gap is ≃10 eV) grown on the Si substrate [46].
The Purcell factor at the case of the M1 radiation is

obtained by generalizing the approach [47] for the E1
transition. The calculation gives:

FIG. 1. The averaged Purcell factor hfM1
P i (6) for the 229Th

nuclei uniformly distributed inside a dielectric sphere as a
function of R=λ. The inset (a) shows fM1

P for the 229Th nuclei
placed at the center of a sphere.

FIG. 2. The same as in Fig. 1, but with the dielectric sphere
placed in a cavity of metallic Al.
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fM1
P ðzÞ ¼ 1

2
Im

Z
∞

0

�
Fðd̂0 − ẑ; R⊥

12ÞFðẑ; R⊥
13Þ

Fðd̂0;−R⊥
12R

⊥
13Þ

κ3

l1

þ
�
ð1 − κ2ÞFðd̂0 − ẑ;−R⊥

12ÞFðẑ;−R⊥
13Þ

Fðd̂0;−R⊥
12R

⊥
13Þ

þ Fðd̂0 − ẑ;−Rk
12ÞFðẑ;−Rk

13Þ
Fðd̂0;−Rk

12R
k
13Þ

�
κ

l1

�
dκ: ð7Þ

Here, Fðx; yÞ ¼ 1þ y expð−2l1xÞ, d̂0 ¼ k1d0, ẑ ¼ k1z,
and z is the distance between the 229Th nuclei and
vacuum=SiO2 interface. The reflection coefficients in

Eq. (7) are defined as Rk
1;j ¼ ðε1lj − εjl1Þ=ðε1lj þ εjl1Þ,

R⊥
1;j ¼ ðε1 − εjÞ=ðε1 þ εjÞ, where l1 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
, j ¼ 2,

3, lj ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εj=ε1 − κ2

q
, index 1 refers to SiO2, index 2 to

Si, and index 3 to the vacuum.
As far as fM1

P is dependent on the position of the emitting
object relative to the interfaces, we calculated fM1

P as a
function of z for the following values of dielectric con-
stants: ε1 ≈ 3.3, ε2 ¼ −3.6þ i1.9 at the photons energy
8 eV. The result is shown in Fig. 3.
The radioactive decay curves for the same number N0 of

isomeric nuclei 229Th uniformly distributed [nðzÞ ¼ N0=d0]
in the SiO2 thin film and placed in the infinite SiO2 medium,
are shown in Fig. 3. The curves are normalized to the initial
activity in the infinite SiO2 medium. It can be seen that the
Purcell factor and decay probability for the nuclei placed in
the vicinity of the SiO2=Si interface are rather high. That is
why at the initial time the activity of the nuclei in the film is
higher than in themedium.Over time, the activity in the film
decreases and then the decay is supported by nuclei located
near the SiO2=vacuum interface where fM1

P < 1. All this
leads to a seemingly nonexponential decay in the thin film.
Internal conversion in metal cavity.—Now we consider

the decay of the 229Th nuclear isomer in a spherical metal
cavity. Here the dominant decay channel is the IC.

In the geometry under consideration, the change in the
probability of the IC due to the influence of the metal cavity
on the conversion electrons will be negligibly small. The
energy of the conversion electrons during the decay of the
229Th isomer is several electron volts. The normal incidence
reflection coefficient of these electrons does not exceed
20% for Al [48]. The wavelength of such electrons is of the
order of 10 Å. This is two orders of magnitude smaller than
the wavelength of the nuclear transition and the cavity size,
and it is comparable with the surface roughness of a high-
quality cavity. As a result, electrons are scattered by the
cavity surface, and there will be no quantum electronic
states and effective interference of the incident and
reflected electron waves. Therefore, this cavity can not
significantly affect the density of the final states of
conversion electrons.
Let us consider now the effect of a vacuum-metal

interface on the IC in the 229Th nucleus using the technique
of the photon propagator. The Hamiltonian of the inter-
action of the electron current jðrÞ with the field Am

JMðr; k1Þ
in Eq. (2) is Hint ¼

R
jðrÞAm

JMðr; k1Þd3r. It is easy to see
that the change in the rate of the IC decay of 229Th is caused
by a change of the electronic matrix elementZ

jðrÞ · ½Bm
JMðr; k1Þ −Rm

J A
m
JMðr; k1Þ�d3r: ð8Þ

Taking into account that hð1ÞJ ðyÞ ¼ jJðyÞ þ inJðyÞ, where
nJðyÞ is the spherical Neumann function, the radial part in
Eq. (8) is representedby m̃m

J ðk1Þ ¼ ð1 −Rm
J ÞhfjjJðk1rÞjiiþ

ihfjnJðk1rÞjii, where jii and jfi are the initial and final radial
wave functions of the electron.
The ratio of the IC probabilities for the nuclear MJ

transition in a sphere and in vacuum is

fMJ
PIC

¼ jm̃m
J ðk1Þj2=jmm

J ðk1Þj2; ð9Þ
where mm

J ðk1Þ ¼ hfjjJðk1rÞjii þ ihfjnJðk1rÞjii. Using the
dimensionless parameter δJ ¼ hfjjJðk1rÞjii=hfjnJðk1rÞjii,
we rewrite Eq. (9) as

fMJ
PIC

¼ 1þ 2Im½Rm
J �δJ þ½ð1þRe½Rm

J �Þ2þðIm½Rm
J �Þ2�δ2J

1þ δ2J
:

In the case of low-energy nuclear transitions, we have
δJ ≪ 1. For example, the numerical calculation yields δ1 ≤
10−14 for theM1 IC from the 7s1=2 shell of the Th atom. At
the same time, the imaginary and real parts of the reflection
coefficient Rm

1 for metallic Al are fjRe½Rm
1 �j; jIm½Rm

1 �jg ≤
1 in the range x ≥ 1. The similar situation holds for the E2
component of the 3=2þð7.8 eVÞ → 5=2þð0.0Þ transition:
δ2 ≃ 10−14 − 10−15 for the E2 IC from the 6d3=2 shell and
δ2 ≃ 10−12 − 10−14 for the transitions from the 7s1=2 shell,
and fjRe½Re

2�j; jIm½Re
2�jg ≤ 1 in the range x ≥ 1. Thus,

fM1
PIC

≃ 1, and inside a metal cavity it is not possible to
detect a visible change in the probability of the IC for the
229Th isomeric transition.
The electronic wave functions corresponding to a bound

state are localized in the region r≲ aB in the IC process,
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FIG. 3. Radioactive decay curves QðtÞ from Eq. (5) for the
229Th nuclei in the SiO2 thin film: (1) with fM1

P ðzÞ for the SiO2=Si
sample from Eq. (7), (2) with fM1

P ðzÞ ¼ 1, and (3) the Purcell
factor fM1

P ðzÞ.
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where aB is the Bohr radius, and all electron integrations
should be performed in this region. However, in this region,
the argument of the spherical functions jJðωrÞ and njðωrÞ
in the matrix element mm

J ðk1Þ satisfies the condition
ωaB ≪ 1. The Bessel function jJðωrÞ ∼ ðωrÞJ is very
small, while the Neumann function has a pole
nJðωrÞ ∼ 1=ðωrÞJþ1. Correspondingly, the imaginary part
of the matrix element mm

J ðk1Þ is several orders of magni-
tude larger than the real part, and δJ ≪ 1.
In the IC process for the M1 component, the atomic

nucleus and the electron exchange a virtual photon,
whose energy is ω ¼ 7.8 eV, and the momentum is
q ¼ pf ¼

ffiffiffiffiffiffiffiffiffiffi
2mE

p
. Here,pf is themomentumof the electron

in the final state,m is the electron mass, and E ¼ ωþ Eb is
the energy of the conversion electron, whose initial atomic
shell binding energy isEb. For the conversion from the 7s1=2
state, Eb ≈ −6 eV, E ≈ 2 eV and q ≈ 1.5 × 103 eV. Such a
virtual photon lies outside the mass surface. It has an
effective “mass” m�

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ω2

p
≃ q, exists for a time of

the order Δt ≃ 1=m�
γ ≈ 4 × 10−19 s, and it provides an

effective interaction of the characteristic length
rγ ≤ Δt ≃ 1=m�

γ ≈ 10−8 cm, which is much less than the
cavity radius R ≥ λ ¼ 2π=ω ¼ 1.6 × 10−5 cm. Thus, the
virtual photon attenuates at very short distances, and the
resultant reflected wave is very weak. It should be noted that
for the same reason, it does not matter where the atom is
located inside the cavity.
Summing up, we have shown the possibility to control

the radioactive decay of the isomeric 229Th nuclei due to the
boundary conditions for the electromagnetic field. This can
be important for experimental studies of the isomeric level
properties, in particular for obtaining realistic values of the
isomer half-life and nuclear transition matrix element.
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