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The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian
particle from a bounded domain through a small hole on the domain’s boundary. Here we develop a
formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may
interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first
particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic
fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting
particles and thermal runaway in chemical reactors.
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The narrow escape problem (NEP) [1–6] is ubiquitous in
physics, chemistry, and biology. It deals with the calcu-
lation of the mean time it takes a Brownian particle inside
a bounded domain to escape through a narrow window on
the domain’s boundary; see Fig. 1. In the past two decades
this beautiful and mathematically intricate problem has
received much attention, as it was realized that the mean
escape time (MET) controls the rates of many important
processes in molecular and cellular biology, such as arrival
of a receptor at a reaction site on the surface of a cell [7],
transport of RNA molecules from the nucleus to the
cytoplasm through nuclear pores [8], diffusion of calcium
ions in dendritic spines [9], and other processes [3]. When
the size of the escape hole ϵ is much smaller than the
domain size L, the MET of a Brownian particle can be
expressed via the principal eigenvalue of the Laplace’s
operator inside the domain with the absorbing (Dirichlet)
boundary condition on the escape hole and the reflecting
(Neumann) condition on the rest of the boundary; see, e.g.,
[2]. The latter problem goes back to Helmholtz [10] and
Lord Rayleigh [11]. Recent theoretical developments
addressed the role of the initial position of the Brownian
particle [12], complicated geometries [13–21], finite life-
time of the escaping particle [22,23], and the presence of a
kinetic bottleneck at the escape hole [24].
In a host of situations of biological importance there

are many Brownian particles, which attempt to escape
through a small hole (or reach a small site). If they are
treated as noninteracting, the escape statistics can be
expressed via the one-particle statistics [25,26]. Quite
often, however, the particles interact with each other, such
as in a highly crowded intracellular environment [3].
Although the importance of interactions may have been
recognized earlier, there have been no attempts to include
them in the theory. This is our main objective here, but the
formalism proves useful also for ensembles of noninter-
acting particles.

One approach to solving the NEP for a single Brownian
particle with diffusivity D0 relies on the calculation of the
particle’s nonescape probability until time T, P1ðTÞ. In the
small-window limit, ϵ=L ≪ 1, the problem simplifies
because the particle’s escape becomes a relatively rare
event [2]. For times much longer than the diffusion time
across the escape hole, T ≫ ϵ2=D0, and for a uniformly
distributed random initial position of the particle, P1ðTÞ
decays exponentially in time [1–5],

− lnP1ðTÞ ≃ TD0μ
2
0; ð1Þ

where μ20 is the principal eigenvalue of the eigenvalue
problem ∇2Ψþ μ2Ψ ¼ 0 inside the domain with the mixed
boundary conditions Ψðx∈Ωa;tÞ¼∇Ψðx∈Ωr;tÞ · n̂¼0.
Here Ωr is the reflecting part of the domain’s boundary,
Ωa is the complementary absorbing part (the small escape
hole), and n̂ is the local normal to the boundary.
Correspondingly, the MET is equal to hT1i ≃ 1=D0μ

2
0,

and this result holds up to small corrections in ϵ=L [19].
In the leading order, which isOðϵ=LÞ, μ20 (found already by
Lord Rayleigh [11]) can be expressed through the electrical
capacitance Cϵ of the conducting patch Ωa in an otherwise

FIG. 1. Narrow escape of a single Brownian particle. Ωa is a
small hole of linear size ϵ.Ωr is the reflecting part of the boundary.
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empty space: μ20 ≃ 2πCϵ=V, where V is the domain’s
volume. The capacitance Cϵ scales as ϵ. If Ωa is a disk
of radius ϵ, then Cϵ ¼ 2ϵ=π [27] leading to hT1i≃
V=ð4ϵD0Þ, which is independent of the domain shape [2].
The nonescape probability PðT;NÞ of N noninteracting

Brownian particles, randomly distributed over the domain,
is the product of their single-particle nonescape probabil-
ities (1). Therefore, at long times, it also decays exponen-
tially in time, − lnPðT;NÞ ≃ Tsðn0; ϵÞ, with the decay rate

sðn0; ϵÞ ¼ ND0μ
2
0 ≃ 2πCϵD0n0; ð2Þ

where n0 ¼ N=V is the particle number density. For very
low densities, n0ϵ3 ≪ 1, Eq. (2) yields the MET of the first
particle, hTi ≃ 1=sðn0; ϵÞ [25]. Indeed, in this regime hTi is
much longer than the diffusion time across the hole, ϵ2=D0.
At higher densities, n0ϵ3 ≫ 1, we have hTi ≪ ϵ2=D0.

As the diffusion length scale
ffiffiffiffiffiffiffiffiffi
D0T

p
is now much smaller

than ϵ, the process is effectively one dimensional (1D) in
the direction normal to the hole. Here the nonescape
problem reduces to a well-studied problem of finding the
survival probability P1D of a gas of noninteracting
Brownian particles of density n1D (per unit length),
randomly placed on a half-line x > 0, against absorption
at x ¼ 0 [28–37]. Here P1D decays as a stretched expo-
nential, − lnP1D ≃ ð2= ffiffiffi

π
p Þn1D

ffiffiffiffiffiffiffiffiffi
D0T

p
[29,37]. To evaluate

PðT;NÞ, one should set n1D ¼ n0Aϵ, where Aϵ is the area
of Ωϵ [37]. For a circular hole of radius ϵ this leads to

− lnPðT;NÞ ≃ 2
ffiffiffi
π

p
n0ϵ2

ffiffiffiffiffiffiffiffiffi
D0T

p
; ð3Þ

and one obtains hTi ≃ ð2πD0n20ϵ
4Þ−1 [25].

For interacting particles the nonescape probability
PðT;NÞ is not equal to the product of single-particle
probabilities, and a new approach is required. We develop
such an approach here and calculate the nonescape prob-
ability PðT;NÞ of N ≫ 1 interacting particles at long and
short times. At long times, PðT;NÞ decays exponentially
in time,

− lnPðT;NÞ ≃ Tsðn0; ϵÞ: ð4Þ

The dependence of sðn0; ϵÞ on the geometry factorizes
up to small corrections in ϵ=L. In the leading order in ϵ=L
we obtain

sðn0; ϵÞ ≃ πCϵf2ðn0Þ: ð5Þ

The nonlinear function fðn0Þ, which we show how to
calculate, encodes particle interactions and is model
dependent.

At short times we obtain

− lnPðT;NÞ ≃ Aϵgðn0Þ
ffiffiffiffiffiffiffiffiffi
D0T

p
; ð6Þ

with a model-dependent nonlinear function gðn0Þ.
Now we present our results in some detail. Assuming a

large number of particles in the relevant regions of space,
we employ fluctuating hydrodynamics: a coarse-grained
description in terms of the (fluctuating) particle number
density ρðx; tÞ [38,39]. The average particle density obeys a
diffusion equation ∂tρ ¼ ∇ · ½DðρÞ∇ρ�, whereas macro-
scopic fluctuations are described by the conservative
Langevin equation

∂tρ ¼ −∇ · J; J ¼ −DðρÞ∇ρ −
ffiffiffiffiffiffiffiffiffi
σðρÞ

p
ηðx; tÞ; ð7Þ

where DðρÞ and σðρÞ are the diffusivity and mobility of the
gas of particles, and ηðx; tÞ is a zero-mean Gaussian noise,
delta correlated in space and time. The density ρ and flux J
satisfy the boundary conditions

ρðx ∈ Ωa; tÞ ¼ 0; Jðx ∈ Ωr; tÞ · n̂ ¼ 0: ð8Þ

To proceed further we employ the recently developed
macroscopic fluctuation theory (MFT) [40]. The MFT grew
from the Martin-Siggia-Rose path integral formalism in
physics [41–43] and the Freidlin-Wentzell large-deviation
theory in mathematics [44]. It follows from a path integral
formulation for Eq. (7), which describes the probability of
observing a joint density and flux histories ρðx; tÞ, Jðx; tÞ,
constrained by the conservation law (7),

P ¼
Z

DρDJ
Y
x;t

δð∂tρþ ∇ · JÞ exp ð−SÞ;

S½ρðx; tÞ; Jðx; tÞ� ¼
Z

T

0

dt
Z

d3x
½JþDðρÞ∇ρ�2

2σðρÞ : ð9Þ

The next step in the derivation, by now fairly standard
[40,42,43], exploits the large parameterN ≫ 1 to perform a
saddle-point evaluation of the path integral. The dominant
contribution to P comes from the optimal fluctuation:
the most probable history ðρ; JÞ ensuring the particle
nonescape up to the specified time T and obeying the
conservation law. The ensuing minimization procedure
yields the Euler-Lagrange equation and the problem-
specific boundary conditions. With the solutions at hand,
one calculates the action S, which yields the nonescape
probability PðT;NÞ up to a preexponential factor,

− lnPðT;NÞ ≃ S≡min
ρ;J

S½ρðx; tÞ; Jðx; tÞ�: ð10Þ

The resulting problem simplifies in the limits of very
long and very short times (we elaborate on the relevant time
scales below). At long times, the optimal gas density and
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flux, conditioned on nonescape, become stationary, in
analogy with a closely related problem of survival of
particles inside domains with fully absorbing boundaries
[45]. As a result, PðT;NÞ exponentially decays with time
T; see Eq. (4). A similar property lies at the origin of the
“additivity principle” [46], proposed in the context of
stationary fluctuations of current in systems driven by
density reservoirs at the boundaries.
In the stationary formulation, Eq. (7) yields ∇ · J ¼ 0, so

the optimal flux J is a solenoidal vector field. In the
nonescape problem, J must also have zero normal compo-
nent at the entire domain’s boundary. Using these proper-
ties, one can show (see Ref. [45] and Appendix A of
Ref. [47]) that J is also vortex free and thus vanishes
identically. This means that the fluctuating contribution to
the optimal flux exactly counterbalances the deterministic
contribution, thus preventing the particles from escaping.
Now we have to find the optimal density profile. Upon the
ansatz J ¼ 0 and ρ ¼ ρðxÞ in Eq. (9), the action S becomes
proportional to T, and the problem reduces to minimizing
the action rate functional

s½ρðxÞ� ¼
Z

d3x
½DðρÞ∇ρ�2
2σðρÞ ; ð11Þ

subject to the boundary conditions (8) and the mass
conservation constraint

Z
d3xρðxÞ ¼ n0V: ð12Þ

Let us introduce the new variable uðxÞ ¼ f½ρðxÞ�, where
the function f is defined by the integral [48],

fðρÞ ¼
Z

ρ

0

dz
DðzÞffiffiffiffiffiffiffiffiffi
σðzÞp : ð13Þ

We denote the inverse function, f−1, by F. Expressed
through uðxÞ, the action rate (11) is reduced to the effective
“electrostatic action”

s½uðxÞ� ¼ 1

2

Z
d3x½∇uðxÞ�2; ð14Þ

which, remarkably, is universal for all interacting particle
models described by Eq. (7). Now we minimize this action,
incorporating the mass conservation (12),

Z
d3xF½uðxÞ� ¼ n0V; ð15Þ

via a Lagrange multiplier Λ. The Euler-Lagrange equation
has the form of a nonlinear Poisson equation [45],

∇2uþ Λ
dFðuÞ
du

¼ 0; ð16Þ

with the mixed boundary conditions [49],

uðx ∈ ΩaÞ ¼ 0; ∇uðx ∈ ΩrÞ · n̂ ¼ 0: ð17Þ

The action rate (14), evaluated on the solution to the
problem (15)–(17), yields the decay rate sðn0; ϵÞ from
Eq. (4), specific to each gas model. If there are multiple
solutions, the minimum-action solution must be chosen.
Now we apply the steady-state formalism to the diffusive

lattice gases [38,39,50]. This is a class of microscopic
models, defined by a prescribed stochastic particle dynam-
ics on a lattice. The diffusivity DðρÞ ≥ 0 and the mobility
σðρÞ ≥ 0 should be obtained from the microscopic model.
The simplest example is a gas of noninteracting random
walkers (RWs). On large scales and at long times these
are indistinguishable from the noninteracting Brownian
particles [51]. For the RWs one has DðρÞ ¼ D0 ¼ const,
and σðρÞ ¼ 2D0ρ [38].
A more interesting example is the symmetric simple

exclusion process (SSEP), which accounts for excluded-
volume interactions. In the SSEP each particle can hop to a
neighboring lattice site only if that site is vacant [38]. In the
coarse-grained description of the SSEP one has DðqÞ ¼
D0 ¼ const and σðρÞ ¼ 2D0ρð1 − ρa3Þ [38,39]. We set the
lattice constant a to unity, so that 0 ≤ ρ ≤ 1.
Let us first see that the formalism (13)–(17) reproduces

the classical narrow-escape results for the RWs. In this case
Eq. (13) yields fðρÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2D0ρ
p

, while Eq. (16) reduces to
the Helmholtz equation

∇2uþ μ2u ¼ 0; ð18Þ

with μ2 ≡ Λ=D0 playing the role of the eigenvalue. The
minimum action is achieved for the fundamental mode
of this equation. We denote it by Ψ0ðxÞ and normalize it to
unity,

R
d3xΨ2

0ðxÞ ¼ 1. Subject to the mass conservation
(15), the solution can be written as uðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2ND0

p
Ψ0ðxÞ.

Now we plug it into Eq. (14), use the identity
ð∇Ψ0Þ2 ¼ ∇ · ðΨ0∇Ψ0Þ −Ψ0∇2Ψ0, apply the divergence
theorem to the first term on the right, and use Eqs. (17) and
(18) for Ψ0ðxÞ. The resulting s½uðxÞ� ¼ sðn0; ϵÞ is equal to
ND0μ

2
0 in agreement with the exact result cited in Eq. (2).

The case of RWs is important because here one can also
exactly solve the full time-dependent MFT equations [45].
The time-dependent solution shows that, for T ≫ ϵ2=D0,
the leading-order contribution to the action indeed comes
from the steady-state solution. Furthermore, only a vicinity
of the escape hole contributes. That is, to leading order in
ϵ=L, the solution for a finite domain coincides with the one
for a gas of particles occupying the infinite half-space on
one side of an infinite reflecting plane with the hole Ωa
on it.
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For interacting particles Eq. (16) is nonlinear, but we can
exploit the small parameter ϵ=L in the same spirit. The
nonescape probability of the gas in the infinite half-space
until a long time T can be obtained from an unconstrained
minimization procedure where, instead of Eq. (15), we use
the boundary condition uðx → ∞Þ ¼ fðn0Þ. Setting Λ ¼ 0
in Eq. (16), we arrive at the Laplace’s equation for uðxÞ.
The solution can be expressed through the electrostatic
potential ϕðxÞ of a conducting patchΩa kept at unit voltage
on an otherwise insulating infinite plane,

uðxÞ ¼ fðn0Þ½1 − ϕðxÞ�: ð19Þ

In simple cases (e.g., when Ωa is a disk), ϕðxÞ can be
found explicitly [27]. Equation (19) yields the stationary
density profile, optimal for the particle nonescape,
ρðxÞ¼Fffðn0Þ½1−ϕðxÞ�g. Plugging Eq. (19) in Eq. (14)
yields the announced result (5) for the decay rate of the
nonescape probability to order ϵ=L. It is given by the
electrostatic energy created by a conductor Ωa held at
voltage fðn0Þ, where Cϵ is the electrical capacitance of
the conductorΩa. The entire effect of interactions is encoded
in the density dependence fðn0Þ, coming from the nonlinear
transformation (13). The geometry dependence is universal
for all gases of this class and is given by the capacitance Cϵ.
The latter is determined by the shape of the hole and is
independent of the domain shape. A dependence on the
domain shape emerges in higher orders in ϵ=L. When
specialized to the RWs, Eq. (5) yields the approximate
result cited in Eq. (2), as to be expected.
For the SSEP Eq. (13) yields fðρÞ ¼ ffiffiffiffiffiffiffiffiffi

2D0

p
arcsinð ffiffiffi

ρ
p Þ,

whereas for a small circular window of radius ϵ we have
Cϵ ¼ 2ϵ=π. The resulting decay rate of PðT;NÞ is

sðn0; ϵÞ ≃ 4D0ϵarcsin2ð ffiffiffiffiffi
n0

p Þ: ð20Þ

Figure 2 shows the density dependence of the ratio of this
decay rate to the decay rate for the RWs, Eq. (2). At finite
densities this ratio is always larger than 1, as to be expected
because of the effective mutual repulsion of the SSEP
particles. The finite value of the ratio, π2=4, at close
packing of the SSEP should not be taken too seriously,

because fluctuating hydrodynamics breaks down here [45].
For low densities n0ϵ3 ≪ 1, the MET of the first particle is
given by hTi ≃ 1=sðn0; ϵÞ.
Higher-order corrections (with respect to ϵ=L) to Eq. (5)

can be obtained by matched asymptotic expansions [52].
The inner expansion of uðxÞ is valid at distances from
the escape hole that are much smaller than L. The outer
expansion holds at distances much larger than ϵ. The two
expansions can then be matched in their joint region of
validity to yield a composite expression valid across the
entire domain. This method yields subleading corrections
in ϵ=L for the noninteracting Brownian particles [1,19]. For
interacting particles we can adopt a different formalism.
Remarkably, Eqs. (16) and (17) also serve as a simple
model of thermal runaway in cooled chemical reactors,
where uðxÞ is the stationary temperature field across a
reactor that is insulated by its boundary except for a small
cooling patch on it [53,54]. The (important) difference is
that in the NEP one also should evaluate the action and
minimize it over possible multiple solutions.
The leading-order composite expression for uðxÞ coin-

cides with Eq. (19) [53,54]. As we checked, the action (4)
remains proportional to f2ðn0Þ up to, and including, the
second order in ϵ=L, with a geometry-dependent propor-
tionality constant. The latter is given by the second-order
expansion of the principle eigenvalue of the Laplace’s
operator μ20 [55]. For a small absorbing disk of radius ϵ on
the boundary of a sphere of radius L one obtains μ20V ¼
4ϵ½1þ ðϵ=πLÞ ln ðϵ=LÞ þ � � �� [55]. In the context of the
NEP of the SSEP, this leads to

sðn0; ϵÞ ≃ 4D0ϵ

�
1þ ϵ

πL
ln
�
ϵ

L

��
arcsin2ð ffiffiffiffiffi

n0
p Þ: ð21Þ

Equations (20) and (21) hold for D0T ≫ ϵ2. However,
they yield the MET of the first particle only for very low
densities, n0ϵ3 ≪ 1, where the interparticle interactions
can be neglected. For moderate and high densities,
n0ϵ3 ≫ 1, the MET of the first particle is much shorter
than ϵ2=D0. Here the optimal fluctuation for the nonescape
is nonstationary, and we must return to the time-dependent
MFT formulation (9). The problem boils down to finding
the survival probabilityP1D of a gas of interacting particles,
randomly distributed on a half-line x > 0, against absorp-
tion at x ¼ 0. This problem was studied via the MFT [37].
The stretched-exponential decay with time, − lnP1D ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðn0ÞT

p
s1Dðn0Þ, holds in spite of the interactions. For

the SSEP, the MFT yields a low-density expansion
s1Dðn0Þ ¼ ð2= ffiffiffi

π
p Þ½n0 þ ð ffiffiffi

2
p

− 1Þn20 þ � � �� [37,56]. For
higher densities s1Dðn0Þ can be computed numerically
[37]. This brings us to the result announced in Eq. (6) with
gðn0Þ≡ s1Dðn0Þ, and we obtain hTi ≃ 2½A2

ϵD0g2ðn0Þ�−1.
A plausible setup, where our predictions can be com-

pared to experiment, is a “pore-cavity-pore” device of μm

FIG. 2. The ratio of the decay rate of the nonescape probability
for the SSEP, Eq. (20), to the same quantity for the RWs, Eq. (2),
vs the gas density n0 ¼ N=V.
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dimensions with a nanoscale hole [57]. It allows for a
controlled entrapment of particles of a nanoscale size,
which, once trapped, can freely diffuse. Fluorescence
imaging is used to track their positions. The authors of
Ref. [57] reported measurements of the decay rate of the
average number of particles inside the device, and noticed
deviations from a purely Brownian behavior. It would be
interesting to also measure, for different initial number of
particles, and different hole sizes, the MET of the first
particle from the device.
Finally, our general framework for the NEP, rooted in the

MFT, can be extended to more complicated geometries
[5,13–20] and boundary conditions at the escape hole [24].
It can also accommodate reactions among, and a finite
lifetime of, the particles [58–62].
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