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The complex rotational and translational Brownian motion of anisotropic particles depends on their
shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical
versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the
suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we
image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to
determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion
of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement
with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three
dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods.
We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a
powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
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The Brownian motion of embedded tracers has been
applied to determining the viscoelasticity of soft materials
and microscopic objects via passive microrheology for
more than two decades. Typically, dynamic light scattering
[1–4] or image-based particle tracking [3,5–9] is used to
measure the tracers’ mean-squared displacement (MSD),
which is then converted to the dynamic shear modulus via
a generalized Stoke-Einstein relation (GSER) [1,2,4,10].
Pioneering work by Cheng and Mason [11] showed that the
rotational diffusion of anisotropic micron-scale particles
can also be used to quantify the rheology via a rotational
GSER, and later it was demonstrated using depolarized
dynamic light scattering [12,13]. Multiple imaging-based
rotational tracking methods have since been reported
[14–18]; however, they do not appear well suited to
microrheology. While the use of anisotropic nanoparticle
tracers would greatly facilitate the application of this
approach to stiffer materials and much smaller length
and time scales than possible with larger tracers, micro-
rheology places stringent requirements on the accuracy of
the tracer’s inferred mean-squared displacement. Indeed,
despite several reports of gold nanorod (GNR) rotational
tracking using imaging [19–31] and depolarized scattering
[32–36], no one has demonstrated the use of GNRs to
accurately measure the rheology of a viscoelastic material.
Moreover, no models of the complex anisotropic transla-
tional diffusion [32,33,37] that these particles would
execute in a viscoelastic material, or its coupling to the
rotational diffusion, have been reported or validated.
Here, we study the rotational and translational Brownian

motion of single GNRs using a laser-illuminated dark-
field microscope modified to simultaneously record two

orthogonally polarized images. A polarimetric analysis,
based upon a nano-optical model of the GNR, enables
the accurate determination of the rods’ three-dimensional
orientation to better than one degree at up to several
thousand frames per second. The rotational diffusion
motion quantified by a mean-squared angular displacement
can be quantitatively converted into a dynamic shear
modulus via a generalized Stokes-Einstein relation. We
demonstrate this “nanorheology” approach in concentrated
viscoelastic solutions of polyethylene glycol polymer,
extending passive microrheology down to 100 nm length
and single attoliter (10−18 l) volume scales. Moreover, we
extend an earlier study [37] of two-dimensional anisotropic
translational diffusion [38] in Newtonian fluids to the
unbounded, three-dimensional and the viscoelastic cases
and find that it accurately reproduces the observed motion
of single isolated nanorods.
GNRs are ideal orientation probes, since their surface

plasmon resonance [22] depends on their relative orienta-
tion with respect to the external electric field [39] and their
scattered light is thus strongly polarized [26,40]. Previous
studies [26,39,40] have shown that far-field scattered light
of a single GNR can be modeled by the electric field
emitted from three independent and orthogonal principal
dipoles, with the dipole aligned along the rod’s long axis
being predominant. We computed the strength of these
principal dipoles using the discrete dipole approximation
method [41–44] (see Supplemental Material Sec. I.1 for
details [45]). We image the particles using a custom-built
dark-field microscope that focuses a single mode, 300 mW
diode pumped solid state laser (λ ¼ 670 nm) in the back
aperture of a high-NA, oil-immersion objective to produce
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a small, collimated Gaussian beam in the specimen
[Fig. 1(a)]. We took advantage of the polarization sensi-
tivity of GNR scattering by illuminating the rod with a
circularly polarized laser beam and splitting the scattered
light into two images on the same camera detector,
corresponding to two orthogonal linear polarization chan-
nels [45]. The integrated intensity of the GNR images in
these two channels is a function of the GNR orientation,
specifically, its polar angle β and azimuthal angle φ
[Fig. 1(c)]. We use a semianalytic physical optics model
to compute the expected intensities in our high-numerical-
aperture microscope. Inverting these periodic functions
maps the inferred position of the rod’s orientation into
a single octant domain of the unit sphere. While this
precludes determining the absolute spatial orientation of the
rod, it does allow the angular mean-squared displacement,
needed for microrheology, to be reliably determined.
To demonstrate the angular tracking capability of the

imaging system, we first studied the motion of GNRs
(20 × 100 nm2) in pure glycerol. The intensity of the
scattering light in the x and y channels and the total
intensity are shown as functions of the time in Figs. 2(a)
and 2(b). Figure 2(c) shows the inferred polar and azimu-
thal angles of a single GNR versus the time. As expected,
the inferred GNR orientation, as shown in Fig. 2(d), fully
explores the available octant of a unit sphere. Typical
images of the GNR at different orientations at selected
times are shown in Fig. 2(f). Tracking the centroid position
of the GNR over time [Fig. 2(g)] indicates that translational
Brownian motion of the GNR is small enough that rods do
not go out of focus during image collection. The shape of
the distribution of polar angles and azimuthal angles over
105 image pairs is consistent with the GNR exploring
all orientations randomly to within statistical sampling
[Fig. 2(h)], confirming the accuracy of our polarimetric
analysis [46–52].
The mean-squared angular displacement (MSAD),

MSAD ¼ hjuðtþ τÞ − uðtÞj2it, is bounded by the direction
vector being limited to the unit sphere, leading to a single
exponential crossover with an asymptote of 2, h−Δû2ðtÞi¼
2½1−ð1−ε2rÞexpð−2DrtÞ�, where Dr is the rotational
diffusion coefficient and εr is the measurement error in

the orientation vector [14,53,54] [Fig. S5(a)]. With unit
vectors mapped to an octant, a similar effect occurs;
Monte Carlo (MC) simulations [45] show that the resulting
MSAD is well described empirically by a stretched
exponential function with an asymptote of 0.5:

hjΔû2ðtÞji ¼ 1

2
f1 − ð1 − ε2rÞ exp½−ðκDrtÞζ�g; ð1Þ

where κ ¼ 1.6 and ζ ¼ 0.95 are constants [Fig. 3(a)].
Equation (1) compares favorably to the MSAD determined
for single GNRs in pure glycerol [Fig. 3(b)]. Fitting
yields a rotational diffusion constant Dr ¼ 3.5 rad2=s
and an estimated angular measurement uncertainty
ε2r ¼ 2.5 × 10−4 rad2, better than 1° directional precision.
We also determined the translational diffusion coefficient
by fitting to the short lag time data from centroid-based
particle tracking [53] [Fig. S5(c)]: hΔr2xyi ¼ 4Dttþ 4ε2t .
This yields a value of Dt ¼ 0.007 μm2=s and a position
uncertainty of ∼9 nm.
The theoretical prediction of translational and rotational

diffusion coefficients for a rod (in the lab frame) are
Dr¼½ð3KTÞ=ðπηl3Þ�½lnρþCrðρÞ� and Dt¼½ðKTÞ=ð3πηlÞ�

FIG. 1. (a) GNR scattering and imaged by a dark-field micro-
scope. (b) GNR embedded in viscoelastic polymer solution.
(c) Coordinate system of the GNR defined by polar β and
azimuthal angles φ.
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FIG. 2. Integrated intensity of a GNR in glycerol in orthogonal
x and y polarization images (a), with the corresponding sum of
intensities (b) and the inferred orientation angles (c). Time-
dependent 3D GNR orientation mapped into a single octant (d).
Orientations of selected time points (1–7) marked in (e),
corresponding image pairs (1.6 × 1.6 μm2) in (f). Trajectory
(g) of the GNR showing translational motion. Frequency dis-
tributions of orientation angles (h) from 105 image pairs
(symbols) match a random orientation model (curves).
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½lnρþCtðρÞ�, where K and T are the Boltzmann constant
and temperature, respectively, l and d are the length and
diameter, respectively, of the rod, and Cr and Ct are,
respectively, the rotational and translational drag coefficient
correction factors which are a function of the aspect ratio ρ
and the shape of the rod ends [18,55,56]. The ratio of the
translational to the rotational diffusion coefficients is only a
function of the geometry of the GNR: ðDt=DrÞ ¼ l2fðρÞ.
Electron microscopy shows that the rods have a consistent
20 nm diameter and lengths of 100� 11 nm; data are
shown in Supplemental Material [45]. Using a spherocy-
linder model and assuming the rods are stripped of their
CTAB ligands in neat glycerol, the length of the single
GNR tracer is inferred to be l ¼ 107� 2 nm, and the
viscosity of the solution can be estimated as η ¼ 1.26 Pa s,
in excellent agreement with the expected value of 1.29 Pa s,
for pure glycerol at 21� 1.5 °C.
The rotational diffusion of a nanorod in a viscoelastic

material has been described by a Langevin torque equation
Ir _ΩðtÞ ¼ ΓrðtÞ −

R
t
0 ξ̃rðt − τÞΩðτÞdτ, where Ω is the angu-

lar velocity of the nanorod, Γr is the thermal driving torque,
and ξ̃r is the rotational memory function [11]. Mason et al.
have shown that the solution of this equation is similar to

that for the translational Langevin equation [3]. Taking the
Laplace transform of the Langevin equation, applying the
principles of causality and thermal energy equipartition,
and neglecting the inertia term, the Laplace transform of
the angular velocity will be hṽð0ÞṽðsÞi ¼ kBT=ξ̃rðsÞ.
Taking the GNR as a spherocylinder leads to the
Laplace transform of the rotational memory function to
be ξ̃rðsÞ ¼ 1

3
πl3η̃ðsÞ=½lnðρÞ þ Cr�, where η̃ðsÞ is the fre-

quency-dependent viscosity. Replacing hṽð0ÞṽðsÞi with
ðs2=2ÞhΔũ2l ðsÞi leads to the rotational generalized
Stokes-Einstein relation (RGSER) for the GNR

G̃ðsÞ ¼ sη̃ðsÞ ¼ 6kBT
πsl3hΔũ2l ðsÞi

½ln ρþ Cr�; ð2Þ

where Δũ2l ðsÞ is the Laplace transform of an MSAD,
hΔû2l ðtÞi, that unlike hΔû2ðtÞi is unbounded in magnitude
at a long lag time. We developed an approach that computes
a lag-time-independent mapping between these two bounded
and unbounded MSADs by inverting Eq. (1), which leads to
hΔû2l ðtÞi ¼ 4Drt ¼ ð4=kÞfln½1=ð1 − 2hΔû2ðtÞi�g1=ζ. We
validated this procedure using simulated trajectories of tracer
beads in different model viscoelastic fluids using a method
developed by Khan and Mason [50]; see Supplemental
Material Sec. I.7 [45]. This procedure has the expected effect
of linearizing the bounded MSAD of GNR in the glycerol
solution; see Fig. 3(b). A limitation of this approach is the
amplification of uncertainties in hΔû2ðtÞi for lag times
longer than the rod’s Brownian tumbling time, which limits
the usefulness of this method as the bounded MSAD
approaches its asymptotic values.
To demonstrate the feasibility of using Eq. (2) to measure

nondiffusive Brownian motion and viscoelasticity with
single GNRs, we suspended rods in an aqueous polyethyl-
ene oxide (PEO) solution (200 K molecular weight,
6.7% and 12.2% w/w), previously employed in a micro-
rheology study by Dasgupta et al. [1]. In both samples, the
diameter of the rods is larger than the mesh sizes of the
entangled polymer solutions at these concentrations (see
Supplemental Material for more details of the polymer
characteristics [45]). Measured bounded MSADs, shown
by symbols in Fig. 3(c), were remapped to unbounded
MSADs, shown in Fig. 3(c) by lines.
To validate our tracking results, we can compare them

to those of the earlier microsphere study using the same
viscoelastic sample, by rescaling the MSDs as LthΔr̃2ðsÞi
and MSADs with L3

rhΔũ2l ðsÞi, where Lt and Lr are,
respectively, the translational and rotational effective length
of probes derived from equating G̃ðsÞ ¼ sη̃ðsÞ ¼ ½ð2kBTÞ=
ðπsL3

rhΔũ2l ðsÞiÞ� ¼ ½ð2kBTÞ=ðπsLthΔr̃2ðsÞiÞ�. For a sphere
of diameter d, Lt ¼ Lr ¼ d, and for a nanorod with a length
of l and an aspect ratio of ρ, Lt ¼ ½l=ðln ρþ CtÞ� and
Lr ¼ ½l=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ρþ Cr
3
p Þ�. The L3

rhΔû2l i and LthΔr2i of our
single GNRs in the two PEO solutions is shown with open

(a) (b)

(c) (d)

(e) (f)

FIG. 3. MSADs of simulated (a) and measured (b) GNR in
glycerol (circles), stretched exponential fit (dashed line), and
unbounded MSAD (curve). Measured MSADs (c) of a GNR in
200 kDa PEO, 6.7% w=w (squares) and 12.2% w=w (circles). (d)
Scaled unbound MSAD (open symbols), translational MSD
(closed circles) of the GNR, and rescaled microsphere MSD
[1] (lines) at two PEO concentrations. Storage and loss moduli for
the PEO solution obtained from GNR rotational nanorheology
(symbols) and literature microrheology [1] (lines) at 6.7% w=w
(e) and 12.2% w=w (f).
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and closed symbols, respectively, in Fig. 3(d). As in
glycerol, the length of the GNRs in the 6.7% and
12.2% w/w PEO solution samples are determined by
aligning the scaled MSDs and MSADs of the GNRs to
be l ¼ 94� 2 nm in the 6.7% sample and l ¼ 101� 2 nm
in 12.2%, respectively. Our results compare favorably with
LthΔr2i of 0.65 μm diameter microspheres, deduced from
the previous microrheology study [1] differing systemati-
cally by about 15%. Because excess CTAB was added to
the PEO solution, we assume that the CTAB layers are
intact and that the effective rod diameter, 26 nm, is
correspondingly larger than seen using EM.
Small deviations of the GNR data are attributable to two

main sources: the aforementioned noise amplification of our
mapping procedure at long times and the dynamic error
which occurs at short times [53,54], which can be empiri-
cally corrected by considering results at different camera
exposure times [45]. Physically, our rodmotionmay deviate
from the predictions of the Stokes-Einstein relation due to
polymer depletion near the rod surface [5,57] or decoupling
from the bulk dynamics of the polymer solution [58–61], but
both effects are expected to be small in our system.
As with conventional passive microrheology [1], we

used a Fourier representation of the RGSER G�ðωÞ ¼
½ðkBTÞ=ðπsL3

rFfhΔû2l ðtÞigÞ� to compute the elastic G0ðωÞ
and loss G00ðωÞ moduli, where FfhΔû2l ðtÞig is the unilat-
eral Fourier transform of the unbounded MSAD [1]. The
elastic and shear moduli of the two PEO solutions obtained
from single GNR rotational nanorheology are shown in
Figs. 3(e) and 3(f) by open symbols, compared to literature
measurements based on diffusive wave spectroscopy [1],
shown by lines. In both samples, the maximum frequency
at which we can probe the viscoelasticity is limited by
the maximum recording speed and the minimum expo-
sure time of the camera, while the minimum frequency is
set by the MSAD reaching its asymptote. Notably,
considering the size of the measurement uncertainties
we have obtained with 100 nm GNRs, the maximum
modulus that can be measured by rotational nanorheol-
ogy, G�

max ≈ ½ðKBTÞ=ðl3Δu2minÞ�, is 2 orders of magnitude
larger than measurable using translational microrheol-
ogy, G�

max ≈ ½ðKBTÞ=ðlΔr2minÞ�.
The anisotropic translational Brownian motion of the

GNR can be characterized by two drag coefficients parallel
and perpendicular to its long axis. Following the analysis
of Han et al. [37], in the moving body frame of the rod,
translational displacements, as shown in Fig. 4(a), have a
Gaussian distribution, and the corresponding MSDs in a
viscous fluid, as plotted in Fig. 4(b), are a linear function of
time hΔr2k;⊥i ¼ 2Dk;⊥t, with Dk and D⊥ being diffusion

coefficients parallel and perpendicular, respectively, to the
major axis [Fig. 1(b)]. In a stationary lab frame initially
aligned with the rod at t ¼ 0, however, rotational diffusion
of the GNR erases the particle alignment with the reference
frame, causing translational diffusion to become isotropic

[37] for τ > τθ ¼ 1=2Dr. To capture this effect, we
decomposed the MSDs of single GNRs into x and y
directions with the initial orientation aligned in the x
direction, hΔr2x;yiûð0Þ¼êx

; results are shown in Fig. 4(c).

As expected initially, Dxxðt < τθÞ equals to Dk, and
Dyyðt < τθÞ equals to D⊥, before asymptotically approach-
ing Dt ¼ ðDk þ 2D⊥Þ=3 at long times.
To describe such an anisotropic-to-isotropic crossover

of the diffusion of uniaxial particles, we generalized the
Perrin-Lubensky model [37,38] to three-dimensional rota-
tion [45]. For a rod diffusing in a viscous fluid in 3D,
we obtain

Dii ¼
hΔr2i iûð0Þ

2t
¼ Dt þ ΔD

�
u2i ð0Þ − 1

3

�
τ

t
; ð3Þ

where ΔD ¼ Dk −D⊥ and τ ¼ ½1 − expð−6DrtÞ�=6Dr,
in excellent agreement with the data [Fig. 4(c)]. For an
anisotropic particle such as the GNR, the functional depend-
ence of the translational drag coefficients on its orientation
mixes correlation between translational and orientational
degrees of freedom [37]. For example, we measured two
cross terms hΔx2 cos 2ϕiûð0Þ¼êx and hΔy2 cos 2ϕiûð0Þ¼êx ,

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Anisotropic translational displacement distributions (a),
at τ ¼ 2 ms, of a GNR in 90% glycerol (symbols) with a
Gaussian fit (lines) and corresponding anisotropic MSDs (b).
Diffusion coefficients of the GNR (c), corresponding to the data
in (a) and (b), in the fixed lab frame with the x axis aligned with
the rod’s initial position with the model fit [Eq. (3)]. Mixed
translational and orientational correlations (d) in a fixed frame
(symbols) and MC simulation (curves). Rescaled anisotropic
MSDs (e) of GNR in PEO 6.7% [as in Fig. 3(e)] in the fixed lab
frame (symbols) with a viscoelastic model (curves); unscaled
MSDs shown in Fig. S14 [45]. Diffusion anisotropy (f),
Aii ¼ ðDii −DtÞ=ΔD, for a GNR in glycerol and 6.7% PEO
solution (symbols), with the model [Eq. (4)] (curves).
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shown by open symbols in Fig. 4(d), which agree well with
the numerical result of MC simulation. We note that this
apparent correlation is different from a true cross-coupling of
rotational and translational diffusion, which is manifested
only with chiral tracers.
Unlike viscous fluids, for viscoelastic materials such as

the PEO solution, the mobility tensor of the GNR is a
function of both the lag time and the orientation [45],
altering the form of the anisotropic-to-isotropic crossover.
We extended our model to an arbitrary nonchiral particle in
a linear viscoelastic material [45]. As before, we decom-
posed the MSDs in x and y directions with the initial
orientation of ûð0Þ ¼ êx, for GNRs in viscoelastic PEO
solutions [symbols in Fig. 4(e)]. Since the diffusion
coefficient is not a constant, we normalized the anisotropic
MSDs by their azimuthally averaged values as a function
of the lag time. To model these data, we used the creep
compliance J of the solution calculated from nanorheology
data via hΔûlðtÞ2i ¼ 2kBTL3

rJðtÞ. While our general model
[solid lines in Fig. 4(e)] matches quantitatively with the
current measurement, approximations in our approach will
fail in the limit of very soft, predominantly elastic materials
[45]. Equation (3) and Figs. 4(c) and 4(e) indicate that the
rotational diffusion of the GNR controls the rate of the
anisotropic-to-isotropic crossover. Therefore, intuitively,
one should expect a universal curve for the crossover when
plotted against the orientational displacement instead of the
time. Figure 4(f) shows such a rescaled diffusion anisotropy
defined as Aii ¼ ðDii −DtÞ=ΔD based on MSAD for the
GNR in both glycerol and PEO solutions. The data for both
glycerol (open symbols) and PEO (solid symbols) collapse
upon each other and the theoretical model

Aii ¼
�
u2i ð0Þ − 1

3

�
1 − expð−3hΔûlðtÞ2iÞ

3hΔûlðtÞ2;i
; ð4Þ

plotted by solid lines.
Here we have demonstrated that tracking the rotational

Brownian motion of nanorods expands the capabilities of
passive microrheology to much smaller length scales and
stiffer materials. Moreover, particle heating limits allow
much stronger laser illumination than we use here, sug-
gesting that smaller GNRs, stiffer materials, and higher
frequencies should be accessible. We can imagine mapping
out the structure and rheology at the 100 nm scale, resolving
a typical bacterium into thousands of subvolumes. The small
size of GNRs will also allow the probing of many interfacial
systems and soft materials at or near their intrinsic length
scales, such as many semiflexible polymer materials at their
mesh size or lipid bilayers at the length scale of their thermal
undulations. This approach promises access to nanoscale
structure, dynamics, and mechanics in a wide variety of
biophysical and soft material systems that are currently
accessible, if at all, only to state of the art inelastic neutron or
dynamics x-ray scattering methods.
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