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We consider a two-dimensional electron gas (2DEG) in the quantum Hall regime in the presence of a
Zeeman field, with the Fermi level tuned to a filling factor of ν ¼ 1. We show that, in the presence of spin-
orbit coupling, contacting the 2DEG with a narrow strip of an s-wave superconductor produces a
topological superconducting gap along the contact as a result of crossed Andreev reflection (CAR)
processes across the strip. The sign of the topological gap, controlled by the CAR amplitude, depends
periodically on the Fermi wavelength and strip width and can be externally tuned. An interface between
two halves of a long strip with topological gaps of opposite sign implements a robust π junction, hosting a
pair of Majorana zero modes that do not split despite their overlap. We show that such a configuration can
be exploited to perform protected non-Abelian tunnel-braid operations without any fine tuning.
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During the last decade, we have witnessed a surge in both
theoretical and experimental progress towards the realization
of Majorana-based quantum computation [1–13]. Majorana
zero modes (MZMs) are zero-energy bound quasiparticles
of topological origin that are their own self-adjoint and
obey non-Abelian anyon statistics. As a result, the adiabatic
exchange (or “braiding”) of a pair ofMZMs rotates the wave
function of the degenerate ground state in a noncommutative
fashion [14–19]. Such a process or its generalizations
[20–27] can be viewed as a coherent manipulation of qubit
states realized by pairs of MZMs. The interest in Majorana-
based topological quantum computation stems from the fact
that, as a result of the nonlocality of theMZMs, local sources
of noise do not affect the fidelity of the braiding operation,
nor do they induce decoherence of theground-statemanifold.
This property has inspired implementations of fault-tolerant
computation schemes able in principle to beat decoherence
at the hardware level [1].
The fundamental ingredient needed to create MZMs is

topological superconductivity—either intrinsic, like in
p-wave superconductors [28,29], or artificially designed,
like in proximitized superconducting wires with strong spin-
orbit coupling (SOC) in an external magnetic field [30–32].
More recently, two-dimensional electron gases (2DEGs)
with induced superconductivity are being actively investi-
gated as platforms for topological superconductivity [12,13,
33–41]. In addition to the increased freedom afforded by the
planar geometry, these systems allow for the formation of a
new type of topological quasi–one-dimensional (1D) system,
confined on both sides by two different superconductors
with a phase difference π. For transparent enough contacts,
such π junctions can greatly reduce the magnetic fields
required for MZMs to emerge [38,39].

In this Letter, we show that planar junctions allow for yet
another implementation of 1D topological superconductiv-
ity, with a geometry dual to the above. It is achieved by
contacting a long and narrow strip of a conventional
superconductor with a 2DEG in the quantum Hall (QH)
regime at filling factor ν ¼ 1. The proximitized region
acquires a superconducting gap Δ, and as a result develops
gapless QH edge states along each side. Due to local
Andreev reflection (LAR) processes, these edge states are
a mixture of electrons and holes [42,43]; see Fig. 1.
Assuming that spin-orbit coupling (SOC) is present in
the system, and that the strip width is comparable with or
smaller than the superconducting coherence length, the QH

CAR

(a) (b)

LAR

Bz

Bx

z

y
xSOC

Majorana
2

Majorana 1

 =
 1

 =
 1

SOC

x

y

FIG. 1. (a) A 2DEG with strong SOC and in the ν ¼ 1 state of
the QH phase is proximitized along a narrow strip with an s-wave
superconductor. (b) Sketch of the crossed Andreev reflection
(CAR) and local Andreev reflection (LAR) processes occurring
across and along the proximitized region, respectively. Full
(dashed) lines represent electrons (holes). CAR processes induce
a topological gap in the edge-state Majorana zero modes at the
ends of the strip.
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edge states may become Cooper paired through additional
crossed Andreev reflection (CAR) processes [44–48]
across the strip. We show that a topologically nontrivial
superconducting gap Δ� then opens in the edge-state
dispersion, and MZMs emerge at either end of the strip.
This possibility was suggested by Lee et al. in Ref. [48],
where the requisite CAR processes were experimentally
demonstrated in the case of graphene, although they
concentrated on the ν ¼ 2 regime and not on the ν ¼ 1
condition required for the formation of MZMs.
Here we theoretically investigate the conditions for

CAR-induced topological superconductivity at ν ¼ 1

[49]. (Related approaches have been explored in fraction-
alized QH systems supporting parafermions [50–52].) We
find that both the magnitude and, more importantly, the
sign of the topological gap depend on the amplitude of
the CAR processes. As a result, the sign of Δ� can be
controlled by adjusting the width of the strip and/or the
electronic density of the proximitized region, which in turn
determine the CAR amplitude. Reeg et al. anticipated such
a possibility while studying a related system of two parallel
nanowires coupled through a superconductor [53]. We
show that this effect may be used to induce a sign change
Δ� → −Δ� along the strip by, e.g., electrostatic gating. This
situation corresponds to a one-dimensional topological π
junction along the strip which is host to two degenerate
MZMs that do not hybridize despite their spatial overlap
[51,54,55]. Since the original induced Δ does not change
sign (only the edge-state gap Δ� does), no external fine
tuning is required to maintain the π phase difference, and
the MZMs remain protected at zero energy. As we will
show, this allows for a powerful generalization of tunnel-
braiding strategies (originally proposed by Flensberg [56])
on the two MZMs in the junction, without the need to
carefully control external parameters in the process.
Consider a normal (N) 2DEG with a proximitized

superconducting strip (S) of width WS along the x direc-
tion; see Fig. 1(a). The N region is in the QH regime and is
subject to a Zeeman field along x, allowing the electron
density to be tuned to an odd filling factor ν ¼ 1. (Other
mechanisms, such as interaction-induced spin instabilities,
may play the role of the Zeeman field in some systems
[57,58].) The S region has uniform superconducting pairing
Δ induced by proximity to the parent superconductor.
We also assume that SOC is present in the system, either
in the N region or in the S region (e.g., inherited from a
superconductor made of heavy elements, such as NbN or
NbTiN). The electronic structure of this system, obtained
using a tight binding approximation on a square lattice
(see the Supplemental Material [59] for details), is studied
in the following.
Since the N region is in the ν ¼ 1 QH regime and the S

strip is trivially gapped, each of the two NS interfaces hosts
a single spin-polarized edge state. These states travel in
opposite directions at opposite interfaces [see Fig. 1(a)].

Local Andreev reflections at each interface transform the
edge states into coherent superpositions of electrons and
holes [29,42,43,63,64], but they do not open a gap because
of the chiral nature of the carriers. However, in our
geometry with two parallel NS interfaces at either side
of the strip, another type of Andreev reflection process can
take place, wherein an electron on one interface is scattered
as a hole into the other interface. This crossed Andreev
reflection process has a significant amplitude only for strips
narrower than the coherence length ξ ≈ ℏvF=Δ. Unlike
local Andreev reflection, CAR processes may open a
superconducting gap Δ� in the presence of SOC, since
electron and hole edge states at opposite interfaces propa-
gate in opposite directions at the same wave vector. The
role of the SOC is to cant the spin away from the Zeeman
field in opposite directions in the two edge states, so that
they can pair to form a spin singlet. At ν ¼ 1, the gap
resulting from CAR is topological, as can be seen by a
direct mapping of the two spin-canted edge states plus
pairing into an Oreg-Lutchyn model [30,31] (see Eq. (B4)
in the Supplemental Material]. Figure 2(a) shows the
gapped band structure of an infinite strip with significant
CAR processes (left, WS ≃ ξ) and the gapless case without
CAR (right, WS ≫ ξ). The topological nature of Δ�
manifests in the appearance of MZMs when the strip is
terminated inside the 2DEG [Fig. 2(d)].
The value of the topological gap Δ� is entirely deter-

mined by the CAR amplitude, which in turn depends on the
strip width WS, the Fermi wavelength λF, and the singlet
amplitude governed by the proximity gap Δ and the SOC
strength α. We have performed tight binding simulations
which show, specifically, that Δ� is a real periodic function
of the WS=λF with alternating sign; see Fig. 2(b). This
behavior is confirmed by an analytical calculation in terms
of Green’s functions, which yields

Δ� ≈
4π2t02a3

WSλ̃
2
Fμ̃

× Imðz csc zÞ sin θ; ð1Þ

where θ is the spin canting angle due to spin-orbit coupling,
λ̃F ¼ 2π=

ffiffiffiffiffiffiffiffiffi

2mμ̃
p

, μ̃ ¼ μ − k2F=2m, μ is the strip Fermi
energy, kF is the edge-state Fermi wave vector, and z ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ iΔ=μ̃
p

×WS=λ̃F (see the Supplemental Material
[59] for details). This formalizes the central finding of our
work. The sign of Δ� follows the change in the number
of normal modes in the strip, given by b2WS=λ̃Fc. It is
therefore likely to be realistically tuneable with electrostatic
gating of the strip region that may modify both its effective
width WS and its electronic density, or by adjusting the
width lithographically [53].
The possibility of changing the sign of the topological

gap along the strip opens a new opportunity for the
generation of MZMs. A long strip with a uniform induced
gap Δ but edge-state gaps of opposite sign in its two halves
(Δ�

1Δ�
2 < 0) forms a topological π junction, similar to a
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topological Josephson junction tuned to phase difference
ϕ ¼ π. Such a system then develops two MZMs localized
at the junction [see Figs. 2(c) and 2(d)] that stay at zero
energy despite their spatial overlap as long as the phase
difference across the junction remains π. The π phase
difference between the two halves of the strip is robust.
Since Δ� on both sides is finite and real, its sign does not
depend on perturbations. The CAR π junction is further-
more stabilized by the phase rigidity of the strip order
parameter Δ [59]. Unlike in ϕ ¼ π Josephson junctions, it
does not require fine tuning of any external parameter such
as the flux across the superconducting circuit or the strip

parameters. As a result, CAR-induced topological super-
conductivity enables the creation of MZMs that remain
decoupled regardless of their overlap. This offers great
advantages in the context of coherent Majorana qubit
manipulation and braiding, as outlined in the following
section.
We now present a possible application of the CAR π

junction to the challenge of non-Abelian Majorana braid-
ing. Plenty of proposals for the demonstration of the non-
Abelian statistics of Majorana excitations have been
presented, which hinge on the physical exchange (or
braiding) in real space of pairs of Majorana modes
[14,15,17,18,32]. Some other approaches, however, rest
upon schemes that involve rotation of the wave function
without the need for actual MZMs to move spatially
[16,19–24,56]. Among these, it has been suggested [56]
that adiabatic tunnel processes of single electrons from a
quantum dot into pairs of Majorana zero modes can result
in arbitrary non-Abelian rotations of the ground-state
manifold. These so-called tunnel-braid operations are
extremely versatile, as they allow a universal set of
single-qubit gates, in contrast to braiding that only allows
a limited set of operations. Unfortunately, tunnel braiding
has the drawback of requiring a precise, typically fine-
tuned, phase difference of π between the MZMs involved
throughout the operation. If the phase deviates from this
value, the result of the operation becomes time dependent
and is no longer protected against decoherence.
The robustness and lack of fine tuning of CAR π junctions

promises to overcome this problem. In Fig. 3(a), we present a
possible geometry to implement a CAR-protected tunnel-
braiding scheme. We deposit two narrow superconducting
strips on a ν ¼ 1 2DEG such that two independent
CAR-induced topological gaps Δ�

1 and Δ�
2 open on each.

One end of each strip terminates inside the 2DEG, so that the
corresponding MZMs γ1;2 lie within a finite distance of each
other. TheMZMs γ̃1;2 on the far end of the strips are assumed
to be sufficiently far from the junction so as to become
decoupled from γ1;2. We control the Fermi level of the two
strips, μ1 and μ2, bymeans of two independent gates, in order
to tune the magnitude and sign of the topological gaps Δ�

1;2.
The two “inner” MZMs γ1 and γ2 are then coupled to a

quantum dot through two tunnel barriers that may be tuned
externally. The tunneling couplings t1;2 control the specific
non-Abelian operation to perform. The dot is in the
Coulomb blockade regime, with occupation N. We adia-
batically tune the dot level εD across an N → N − 1
transition between two adjacent Coulomb valleys. This
transfers a single electron to the composite state of the two
Majorana modes. Figure 3(b) shows the evolution of the
low-energy single-particle Bogoliubov spectrum of the full
dot-2DEG-strip system across this process, with dashed
lines corresponding to mostly dot states, and solid lines to
MZMs states in the strip. The two cases with equal (blue,
ϕ ¼ 0) and opposite (red, ϕ ¼ π) signs for Δ�

1;2 show

(a)

(b)

(c)

(d)

FIG. 2. (a) Spectrum of the system with periodic boundary
conditions (PBCs) along both directions for widths of the central
strip such that CAR is present (left, WS ¼ 300 nm) and absent
(right, WS ¼ 2 μm). (b) Behavior of the topological gap Δ� as a
function ofWS=λF, for μ=Δ ¼ 1.95. The grey region corresponds
to the opening of a trivial gap due to the direct overlap of the QH
edge states. (c) Lowest eigenvalues in a system with PBC and two
gaps Δ�

1;2 along the strip, either of equal (blue) or of opposite sign
(red). Two pairs of MZMs appear in the latter case (one pair at
each of the two junctions, required in the case of PBC). (d) LDOS
associated with the zero-energy eigenvalues, calculated for a
system with open boundaries. The strip is such that it terminates
on one end within the 2DEG and on the other at the sample edge.
One Majorana mode (γ̃1) is therefore localized at one end, and the
other (γ̃2) delocalizes in the QH edge states. The gap Δ� changes
sign along the strip length so that two additional nonhybridizing
localized MZMs γ1 and γ2 appear at the boundary. See the
Supplemental Material [59] for the parameters used.
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markedly different structures. The conventional ϕ ¼ 0 case
splits the MZMs away from zero close to the N → N − 1
transition, as they become resonantly coupled via the dot
state [65]. Such an operation is not protected against noise,
and its result depends on timing. In contrast, the ϕ ¼ π case
showsMZMs that remain exactly at zero energy throughout
the operation, as their hybridization across the dot is
forbidden by the opposite sign of Δ�

1;2. The state after
emptying the dot is then independent of timing and
insensitive to noise in εD. As shown by Flensberg [56],
the transformation P within the degenerate ground-state
manifold associated with this process is a rotation by an
angle π around an axis in the xy plane, controlled by the
tunnel couplings t1;2. If the couplings are then changed to
t01;2, and the reverse adiabatic transition N − 1 → N on the
dot is performed, the composite operation P0P rotates the
quantum state of the Majorana modes by an arbitrary angle
around the z axis. In comparison, braiding two MZMs can
only rotate the wave function about the z axis by an angle
of π=2.
As no fine tuning is required to maintain the ϕ ¼ π

condition in the CAR π junction, the tunnel-braiding
process should enjoy similar topological protection as a
standard spatial braiding. In Fig. 3(c), we show the MZM
splitting across a resonant dot as we vary the Fermi energy
under one of the strips while the other is kept fixed. As
expected, we find alternating ϕ ¼ 0 (red) and ϕ ¼ π (blue)
regions, in which the MZM splitting is finite and zero,
respectively. The width in parameter space of the ϕ ¼ π
regions with MZMs pinned to zero is finite, unlike in
topological Josephson junctions.
In essence, we have presented here a scheme towards

one-dimensional topological superconductivity that
extends previous approaches that are based on the prox-
imity effect—i.e., local Andreev reflections—of spinless
helical electronic phases coupled to superconductors.
While such approaches indeed produce a topological order
parameter, its phase is fixed by the parent superconductor.
In contrast, crossed Andreev reflections, relevant in geom-
etries as those discussed here, also produces a topological
order parameter, but its sign may be either the same as or
opposite to that of the parent, depending on the CAR
amplitude itself. Controlling the sign of the topological gap
in a stable way has many ramifications. We have shown
how it may be exploited to produce stable, self-tuned π
junctions, wherein sizeable Majorana overlaps, which are
problematic in more conventional Majorana devices, are no
longer a concern, at least for pairs of MZMs at the junction.
As a result, parametric braiding of Majoranas through, e.g,
tunnel-braiding schemes, becomes significantly more real-
istic. The specific implementation of the CAR-induced
topological gap described here is just one conceptually
simple possibility, but it is not unique. Other phases,
such as quantum anomalous Hall states, could also exhibit
the requisite ν ¼ 1 spin-singlet states. The temperature
requirements for using our protocol are limited by both the

Zeeman splitting and Δ�, which gives a conservative
estimate between 0.1 K and 1 K, well within reach of
current experiments on this type of system. CAR-induced
topological superconductivity is thus proposed as a prom-
ising road forward towards the next landmark in the
field, the realization of protected non-Abelian operations
in the lab.
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