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We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a
distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or
Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on
complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of
nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon
nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate
the feasibility of nondestructive “impedance imaging” to infer microstructural statistics of random,
heterogeneous materials.
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In pursuit of a higher power and energy density as well as
a longer lifetime, electrochemical energy systems increas-
ingly employ hierarchical nanostructured materials [1–4]:
Battery electrodes consist of nanoparticles [5–10]; super-
capacitor electrodes are full of nanopores [11–15]; and in
fuel cells [16–19] and flow batteries [20–22] electrolytes
flow through nanoporous electrodes. The nanoscale dif-
fusion lengths in such materials render the low-frequency
transition from infinite-length Warburg impedance, scaling
as ðiωÞ−1/2, where ω is the applied frequency [23,24], to
finite-length behavior, either resistive or capacitive, now
fully accessible to electrochemical impedance spectroscopy
[25–27]. Nanostructured materials thus present the oppor-
tunity to exploit diffusion-related impedance features to
quantitatively probe their internal structure. Conventional
finite-length diffusion circuit elements are available to
capture the transition, scaling as tanhð ffiffiffiffiffiffiffi

iτω
p Þ/ ffiffiffiffiffiffiffi

iτω
p

for
transmissive diffusion [28–30] and cothð ffiffiffiffiffiffiffi

iτω
p Þ/ ffiffiffiffiffiffiffi

iτω
p

for
bounded diffusion [26,31], where τ is the characteristic
diffusion time, and variants have been derived for nonplanar
geometries, such as cylindrical, spherical, and rectangular
shapes [27,32]. When a charge transfer reaction takes
place simultaneously along with diffusion, their Gerischer-
type derivatives are obtained by replacing

ffiffiffiffiffiffiffi
iτω

p
withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τðkþ iωÞp
, where k is the apparent first-order kinetic

constant [25,33–35]. Identical expressions are also used to
model the impedance of porous electrodes, where τ becomes
the charging time of the RC transmission line representing
the pore resistors and double-layer capacitors [36,37].
Since conventional models assume constant material

properties and simple geometries, experimental Nyquist
plots often exhibit large deviations, such as a depressed
Warburg arc for transmissive diffusion [38–40] or inclined
capacitive rays for bounded diffusion [41–47]. The most

common heuristic approach to describe such deviations is
the constant phase element, scaling as ðiωÞ−α, where
0 < α < 1, placed in various circuit arrangements, which
is commonly rationalized by surface inhomogeneity [46–
48]. While α is usually left as a fit parameter, there
are microscopic morphology models to predict its value
[49–51]. Another approach is the phenomenological
modification of the conventional models by a fractional
exponent, e.g., coth ðiτωÞβ/2/ðiτωÞβ/2 for planar bounded
diffusion, where 0 < β < 1 [23,52–55], which could be
attributed to surface roughness [41,56–58], hierarchical
structures in porous electrodes [59], anomalous diffusion in
disordered materials [57,60,61], or anisotropic diffusion in
battery particles [32].
For many nanostructured materials, nonideal diffusion

impedance is also attributable to the inherent geometrical
randomness, such as particle size distribution in batteries,
pore size distribution in capacitors, tortuosity distribution in
membranes and porous electrodes, and inhomogeneous
boundary layer thickness in flow batteries. Such spatial
heterogeneity naturally introduces a distribution of diffu-
sion times, corresponding to the set of internal path lengths.
Although this concept has been discussed in different
contexts, including batteries [27,32,48,62–64], capacitors
[59,65,66], fuel cells [67], and flow batteries [40], a general
mathematical framework has not yet been developed to
analyze experimental data. One approach is to couple
several finite diffusion elements in parallel, as a crude
approximation of the true heterogeneity [48,63]. Another
approach is to assume a certain, continuous probability
distribution function, sometimes based on supplemental
observations such as electron microscope images
[27,32,62,64–66]. Both approaches, however, require
a priori knowledge about the nanostructure to properly
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choose the number of diffusion elements or the functional
form of the distribution, which is usually not available.
In this Letter, we propose the theory of diffusion

impedance for random heterogeneous materials based on
a distribution of diffusion times (DDT). The innumerable
diffusion paths in a nanostructure generally have different
diffusion times, which often contribute independently in
parallel to the collective diffusion impedance. Then, the
generalized diffusion impedance is given by

z−1GDðωÞ ¼
Z

∞

0

PðτÞz−1D ðω; τÞdτ; ð1Þ

where PðτÞ is the DDT and zD is the finite-length diffusion
model that represents the individual diffusion paths, as
shown in Table I for a set of representative geometries and
boundary conditions. In a circuit analogy, zGD can be
represented by an infinite parallel array of zD, each of
which has a different time constant. We present a general
method to solve the inverse problem for the DDT from
experimental data that does not assume a priori knowledge
on the configurational randomness and consider three
representative cases: a supercapacitor, a Li-ion battery,
and a flow battery.
The DDT framework extends the traditional interpreta-

tion of impedance spectra in terms of a distribution of
relaxation times (DRT) for a linear superposition of the
parallel RC circuit elements [68–70]. Recently, DRT
analysis has been increasingly applied to electrochemical
energy systems [54,71–74], although it is intended only to
represent high-frequency interfacial charging and Faradaic
reactions. Low-frequency diffusion impedance, which con-
tains geometrical information about transport pathways, is
mathematically and physically distinct and cannot be
meaningfully represented by a DRT. Instead, the appro-
priate DDT must be defined.
The geometrical interpretation of the DDT, where each

diffusion time τ ¼ l2/D corresponds to a nanoscale path
length l traversed with diffusivity D, suggests a tantalizing
possibility of “impedance imaging” of nanostructures, by
inverting the impedance spectrum to obtain PðτÞ. The
inversion problem is a Fredholm integral equation of the
first kind, which commonly appears in statistical thermo-
dynamics [75], polymer rheology [76], medical imaging
[77], and other fields. Upon a change of variables, such that
t ¼ logðτÞ and u ¼ − logðωÞ, Eq. (1) can be written in a
convolution form:

yðuÞ ¼
Z

∞

−∞
Kðu − tÞqðtÞdt; ð2Þ

where y ¼ z−1GD is the admittance of the nanostructure, K ¼
z−1D is the diffusion kernel determined by the diffusion
conditions (Table I), and qðtÞ ¼ τPðτÞ is the unknown
distribution function. Evaluating at a discrete set of un for
n ¼ 1; 2; ...; N and discretizing t for a discrete set of tm
for m ¼ 1; 2; ...;M, Eq. (2) can be approximated by
y ¼ KHq, where y and q are vectors such that yn ¼
yðunÞ and qm ¼ qðtmÞ; K is a kernel matrix such that
Kn;m ¼ Kðun − tmÞ; and H is a discretization matrix of the
integral, for which we adopt the trapezoidal rule, although
other discretization schemes may be used [78]. Given
sufficient data, such that N > M, finding q may seem like
a simple linear overdetermined problem subject to an
inequality constraint q ≥ 0. However, this class of inver-
sion problems is known to be mathematically ill posed, and
a naïve least squares regression does not provide a reliable
solution.
Tikhonov regularization is a common method to solve

such an inversion problem [79,80], while others include the
lasso regularization [81], the maximum entropy regulari-
zation [82,83], the Monte Carlo method [84], and the
Fourier transform method followed by filtering [72,85].
Tikhonov regularization is a modified least squares method
where the loss function includes a penalty term that
regulates one of the derivatives (Sobolev norm) of the
solution. Here we opt to control the second derivative in
order to smooth the fitting of irregular or noisy data. Given
a vector of experimental data, yε, the loss function has the
following form:

Φðq; yε; λÞ ¼ kWðyε −KHqÞk22 þ λkD2qk22; ð3Þ

where the first term is the conventional sum of residual
squares and the second term is the penalty term that
imposes smoothness of the solution. Here,W is the diago-
nal weighting matrix, andD2 is the second-order difference
matrix that approximates q00ðtÞ. λ is the regularization
parameter that determines the relative scale of the penalty
term. Minimization of ΦðqÞ belongs to quadratic pro-
gramming, and its standard formulation is presented in
Supplemental Material [86]. Defining the intermediate
solution function by qλðλ; yεÞ ¼ argminΦðq; yε; λÞ subject
to q ≥ 0, it is largely affected by the value of λ; a small λ

TABLE I. zD for different boundary conditions and symmetries. If a charge transfer reaction is taking place simultaneously, their
Gerischer-type derivatives can be used instead.

Boundary condition Blocking Transmissive

Symmetry Planar Cylindrical Spherical Planar

zDðω; τÞ cothð ffiffiffiffiffiffiffi
iωτ

p Þffiffiffiffiffiffiffi
iωτ

p I0ð
ffiffiffiffiffiffiffi
iωτ

p Þffiffiffiffiffiffiffi
iωτ

p
I1ð

ffiffiffiffiffiffiffi
iωτ

p Þ
tanhð ffiffiffiffiffiffiffi

iωτ
p Þffiffiffiffiffiffiffi

iωτ
p − tanhð ffiffiffiffiffiffiffi

iωτ
p Þ

tanhð ffiffiffiffiffiffiffi
iωτ

p Þffiffiffiffiffiffiffi
iωτ

p
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results in overfitting or oscillation in qλ, whereas a large λ
results in oversmoothing.
To determine λ, we employed the real-imaginary cross-

validation method, where we minimize the prediction errors
of separate real and imaginary parts of yε with respect to the
other part [81,88]:

ΨðλÞ ¼ kWfRe½yε� − Re½KHqλðλ; Im½yε�Þ�gk22
þ kWfIm½yε� − Im½KHqλðλ;Re½yε�Þ�gk22: ð4Þ

It is an extension of k-fold cross-validation for a complex
function, with k ¼ 2 partitioning the real and imaginary
parts, that is reliable even for a limited number of data. The
nested minimization of Ψ provides a self-consistent λ̂,
which then can be used to calculate the final solution,
q̂ ¼ qλðλ̂; yεÞ. This inversion method leads to an accurate
estimation when a smooth, well-behaved solution is
expected. Otherwise, the hierarchical regularization method
can be employed [89].
We first illustrate the DDT method for artificial spectra

generated from a known distribution with noise, using the
inversion method to recover the distribution from the
spectra. Figure 1 shows two representative results where
a normal distribution and a bimodal distribution are accu-
rately determined from the spectra without a priori

assumptions about the functional form. Further details of
the simulation studies can be found in Supplemental
Material [86]. As shown in the bimodal example
[Fig. 1(d)], two distinct peaks can be resolved as long as
Δt̄Δu ≪ 1 for ta ≤ un ≤ tb, whereΔt̄ is the separation of the
peak times t̄a and t̄b and Δu is the sampling period among
un. This uncertainty principle sets the resolution limit for
multimodal distributions, e.g., for a battery electrode with a
mixture of active materials or a porous electrode with
inhomogeneous local nanostructure. Even applying to their
aging behavior, it could be possible to separately track the
degradation of each part of the nanostructures. This, on
the other hand, would be nearly impossible to discern in the
impedance spectra, prior to the inverse transform.
For the first physical example, we apply our method to

determine the DDT for a vertically aligned carbon nanotube
(CNT) supercapacitor from the experiments of Mutha et al.
[90]. Considering a vertical unit space surrounded by the
CNTs, conductive charging of the double layer along the
CNT sidewalls can be described by the planar bounded
Warburg kernel. The charging time is determined by the
length of the tortuous CNTs and the cross-sectional area of
the unit space, and their spatial variations lead to a DDT for
the charging time. In Figs. 2(a) and 2(b), the DDT model
accurately fits spectra that deviate slightly from the ideal
bounded Warburg behavior, and the underlying distribution
is extracted by the inversion method. We can also see how
the distribution changes by experimental variables, such as
thevolume fraction (Vf) ofCNTs as shown inFig. 2(c).With
increasing Vf, up to 15%, the primary distribution shifts to
larger values in t. Themost probable charging time, τ̄, shows
a unit slope with respect to Vf in a log-log plot [Fig. 2(d)],
which is predicted theoretically [90]. At a higher volume
fraction (26%), however, it shifts back to lower t, which is
probably due to CNT bundling that renders the inner
sidewalls inaccessible. Secondary peaks are observed in
intermediate volume fractions from 2% to 10% as well as at
26%, which is associated with the heavy tails when the
distributions are mapped onto the interspacing length Γ in
Fig. 2(e). Such an observation was not possible in the
previous study assuming a normal distribution [90]. The
distributions inΓ obtained from the impedance inversion are
consistent with a stochastic simulation [91–93].
For our second example, we perform a DDT analysis of

impedance spectra for a silicon nanowire (SiNW) Li-ion
battery anode from the work of Chan et al. [10] and Ruffo
et al. [44]. Here, Liþ diffuses radially from the side surface
to the center of the nanowires, and the diffusion in
individual nanowires is modeled by the cylindrical bounded
diffusion kernel [27]. In Figs. 3(a) and 3(b), the DDTmodel
accurately captures its inclined diffusion impedance, and
the underlying DDT is determined by the inversion method.
In Fig. 3(c), as the nanowires are lithiated, the DDT spreads
wider and then narrows back reversively after subsequent
delithiation in Fig. 3(d). In Fig. 3(e), the DDTs are
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FIG. 1. (a) Artificial spectra (AS1 and AS2) and their model fits
(MF1 andMF2, respectively) presented on the complex plane and
(b) their phase angles and magnitudes plotted against the
frequency. (c) The true normal distribution used in generating
AS1 and its estimation by inversion of AS1 and (d) the true
bimodal distribution used in generating AS2 and its estimation by
inversion of AS2. The error bars indicate 90% statistical errors of
the estimations, obtained by the bootstrap resampling method for
a given λ̂ [79].
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converted to nanowire radius (r) distributions, which show
a consistent trend within the experimental observations.
Such an estimation could infer the state of health or
degradation of the electrode without damaging the cell.
The Liþ diffusivity can be estimated by matching either the
mean (μ) or the standard deviation (σ) of the radius
distribution. The estimated values are presented in
Supplemental Material [86]. As shown in Fig. 3(f), the
obtained diffusivity varies between 1 and 5 × 10−11 cm2/s,
depending on the concentration, consistent with the results
of Dimov et al. [94]. At high concentrations, both
approaches result in impressively proximate estimations.
On the other hand, the same spectra could result in an
overestimation if interpreted by a primitive model [44].

Our final example, shown in Fig. 4, is a vanadium flow
battery of Liu et al. [96], which illustrates the DDTanalysis
for transmissive diffusion. As the electrolyte flows through
the porous carbon electrode, a boundary layer develops on
the microscopic internal surface. The Nernst diffusion layer
model leads to the transmissive diffusion kernel in Table I.
The boundary layer has spatial variation in its thickness due
to the variation in local velocity and pore configuration,
which leads to a DDT. In Fig. 4(a), the model shows an
excellent agreement with its diffusion impedance, even
though the arc is significantly suppressed compared to the
ideal finite-length Warburg behavior. The inverted DDT,
shown in Fig. 4(b), reveals the dispersion of mass transport
rate in a random porous medium, in addition to the mean.

60

40

20

0
60 70 80 90

1

0.8

0.6

0.4

0

0.2

-2 -1 0 1 2 3

t = log(  [s] )

q(
t)

z

(a)

(c)

(b)
ES
MF

[nm]

P
(  

   
)[

nm
-1
]

z-
[ 

  ]

0

4

6

10

8

2

0 50 150100

0

-1

-3

-5

1

3

0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

t

q(t)

-2

-4

0

2
V

f
 = 1%

V
f
 = 2% V

f
 = 5% V

f
 = 10% V

f
 = 15% V

f
 = 26%

1

Slope = 1

V
f 
 [%]

10-1

100

(d)

[s
]

101100

0.34 Hz

1.87 Hz

200 Hz

[   ]

10-2
(e)

1%
2%
5%

10%
15%

Ref.[91]DDTV
f
 

FIG. 2. (a) Experimental spectra (ES) of a CNT electrode and
its model fit (MF) at Vf ¼ 15%. (b) The corresponding distri-
bution of time constant estimated by the DDT model. Spectra at
other Vf and their inversion results are provided in Supplemental
Material [86]. (c) Change in the distribution over a range of Vf

and (d) shift in the most probable time constant τ̄ with respect to
Vf. (e) Distributions in interspacing length Γ, obtained by the
DDT model and by a stochastic simulation [91].

6

4

2

0
4 5 6

0.8

0.6

0.4

0

0.2

0 1 2 3 4 5

0
20-2 4 6

0.5

0

0.5

1

q (
t )

t

q(
t)

(a) (b)

ES
MF

(c) x = 1.00 (d)

20-2 4 6
0

0.5

0

0.5

1

t

q(
t)

z [   ]

z-
[ 

  ]

t = log(  [s] )

0.1 Hz

0.42 Hz

14.1 Hz

x = 2.50

x = 1.33

x = 2.83

r [nm]

P
(r

) 
[n

m
-1
]

0 50 150100 200
0

1

3

2

0 1 32 4

Ref. [95]Ref. [94]
Ref. [44]

-matchµ-match
Ref. [27]

x

D
 [

cm
2 /

s]

10-8

10-9

10-10

10-11

(f)

10-12

10-2

1.00

2.50
1.33

2.83

x = 0

4.40

(e)

FIG. 3. (a) Experimental spectra (ES) of a SiNWelectrode and its
model fit (MF) at x ¼ 1.33, where x is the stoichiometric concen-
tration of lithium in LixSi. (b) The corresponding DDT estimated
by the inversion method. Spectra at other x and their inversion
results are provided in Supplemental Material [86]. (c) DDTs at a
low and a high x during lithiation and (d) during subsequent
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Amore detailed study with microstructural characterization
will follow [97].
In conclusion, we propose a method of impedance

analysis that considers the inherent geometrical random-
ness of diffusion in nanostructured materials, including (but
not limited to) advanced porous electrodes for energy
storage. It extends the traditional finite Warburg and
Gerischer circuit elements by incorporating the DDT. We
have also developed a mathematical framework to deter-
mine the DDT from electrochemical impedance spectra and
demonstrated the possibility of impedance imaging for
different types of nanostructured electrodes.
The method is not limited to purely diffusive processes

but could be extended for reaction-diffusion phenomena in
heterogeneous materials. For example, the model with a
Gerischer-type kernel could be applied to impedance
spectra for solid oxide fuel cells, in order to more accurately
extract the surface diffusivity and adsorption rate constant
for oxygen electrocatalysis by accounting for the observed
statistical variations in the functional layer microstructure
[34,35,53,98]. Also, the DDT model can be combined with
the traditional DRT model to transform impedance spectra
of the entire frequency range. Our numerical inversion
method could be applied to the hybrid DDT and DRT
models as well to simultaneously study the dispersion of
low-frequency bulk diffusion and high-frequency interfa-
cial charging and reactions.
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