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We demonstrate a three phase-grating moiré neutron interferometer in a highly intense neutron beam as a

robust candidate for large area interferometry applications and for the characterization of materials. This

novel far-field moiré technique allows for broad wavelength acceptance and relaxed requirements related to

fabrication and alignment, thus circumventing the main obstacles associated with perfect crystal neutron

interferometry. We observed interference fringes with an interferometer length of 4 m and examined the

effects of an aluminum 6061 alloy sample on the coherence of the system. Experiments to measure the

autocorrelation length of samples and the universal gravitational constant are proposed and discussed.
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Interferometers employing particle self-interference have
proven to be an extremely sensitive measuring tool,
allowing for the precise characterization of material proper-
ties as well as measurements of fundamental constants
[1,2]. Neutrons, in particular, are a convenient probe due to
their relatively large mass, electric neutrality, and subnan-
ometer-sized wavelengths. The earliest neutron interfer-
ometer (NI) was formed via a pair of prisms and, through
wave front division, achieved Fresnel interference effects
with up to 60 um path separations [3]. Amplitude division
from Bragg diffraction off of crystal planes was later used
to make perfect crystal NIs with Mach-Zehnder (MZ) path
separations of several centimeters [4]. This relatively large
path separation along with the macroscopic size of the
interferometer contributed to its success in exploring the
nature of the neutron and its interactions [5—10]. However,
perfect crystal NIs possess a very narrow wavelength
acceptance, are difficult to fabricate, and operate only
under stringent forms of vibration isolation and beam
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collimation [11-15]. This limits their widespread adaption
at many neutron sources.

Microfabricated periodic structures have been employed
as neutron optical elements to produce quantum interfer-
ence. This led to a demonstration of a MZ -based grating
NI with reflection gratings [16] and a three phase-grating
MZ NI for low energy (<l meV) neutrons [17-20].
However, the inherently low intensity of <1 meV neutrons
makes it difficult for these grating interferometers to
outperform the perfect crystal NI

Here, we demonstrate a broadband, three phase-grating
moire interferometer (PGMI) operating in the far field. The
schematic diagram of the setup is depicted in Fig. 1(a). The
three PGMI employs the universal moiré effect [21] and is
an extension to the recently demonstrated two phase-
grating moiré neutron interferometer [22,23]. Contrary to
the typical MZ interferometers that have two separate and
distinct beam paths, the PGMI works in the full field of a
cone beam from a finite source, similar to in-line holo-
graphic devices. Such full-field systems can be understood
intuitively in the framework of Fourier imaging developed
by Cowley and Moodie [24,25]: the second grating
produces a series of achromatic Fourier images of the first
grating at a specific “echo plane” downstream. The third
grating is detuned from the echo plane to produce a phase
moiré effect with the Fourier images, which is observed as a
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FIG. 1.

(a) Three PGMI schematic diagram where the third grating is offset from the echo plane to produce the moiré pattern, with

period ,, at the camera. The system can be analyzed as the superposition of continuous arrays of Mach-Zehnder interferometers, two of
which are illustrated in the figure. This interferometer is sensitive to phase gradients, such as those induced by gravity. A sample may be
placed between the gratings for phase and dark-field imaging. (b) Writing a phase over the transverse coherence length modifies the
neutron’s transverse momentum distribution and induces diffraction. Shown is the action of 50% comb-fraction phase grating whose
period “As” is equal to the transverse coherence length “#.” of the incoming neutron wave packet, A; = £, = 1/(20;). For a = phase

grating, the zeroth diffraction order is completely suppressed.

beat pattern in intensity in the far field. When all three
gratings have the same period () the fringe period at the
detector (4,) is given by [21]

(Ly + Dy + Dy + Ly)
A= g, 1
d |D2—D1| G ()

where L;, D;, D,, and L, are defined in Fig. 1(a). The
fringe frequency at the detector is given by f, = 1/4,. The
Fourier image and the third phase grating both possess
regular square grating profiles. Therefore, the moiré pattern
they create are broad straight fringes. If there is an angle
between the two, the direction of the moiré fringes will
rotate relative to the grating direction of the third grating. A
more detailed description of the interferometer’s function-
ality can be found in the Supplemental Material [26].
The main differences between the three PGMI and the
neutron Talbot-Lau grating interferometer [27,28] are that
only phase gratings are used, a broader wavelength dis-
tribution is accepted, and the fringes are observed in the far
field. The phase moiré effect in the far field produces large
period interference fringes that are orders of magnitude
larger than the period of the gratings, enabling direct
detection with an imaging detector without the need for
an absorbing analyzer grating. Thus, a greater intensity is
transmitted through a PGMI and the PGMI has compara-
tively relaxed grating fabrication requirements, especially
at smaller grating periods. In addition, grating alignment
for the PGMI is an order of magnitude less stringent
compared to the perfect crystal NI, whose individual
diffracting elements must be aligned relative to each other
to within 0.01 arcsec [29]. Other advantages of this setup
include the use of widely available thermal and cold

neutron beams, large, variable interferometer area, and
the broad, simultaneous wavelength acceptance.

The experiments were performed at the Cold Neutron
Imaging (CNI) facility [30] at the National Institute of
Standards and Technology’s (NIST) Center for Neutron
Research, where a 20 MW reactor provides a steady flux of
thermal and cold neutrons for a variety of instruments. The
CNI is located at the end position of neutron guide 6 and as
such has a polychromatic neutron spectrum that is approx-
imately given by a Maxwell-Boltzmann distribution with
T.=40K or 4. = 0.5 nm.

For this demonstration, we used Si gratings that were
available, but not necessarily optimal for our setup. The
period of each grating was 2.4 ym. The first and third
gratings had a depth of 16 ym corresponding to a phase
shift of ~z/2 for the mean wavelength of 0.5 nm, while the
second grating had a depth of 30 ym corresponding to a
phase shift of ~z. The effect of a single #/2 or z phase
grating on the neutron transverse momentum distribution is
shown in Fig. 1(b). The gratings were oriented vertically to
avoid beam deviation due to gravity. Rotational alignment
of the gratings about the z axis was done with 0.01°
accuracy. The slit width was set to 500 ym and slit height to
1.5 cm. The slit to detector length was fixed at L = 8.8 m,
while the distance between the slit and the second grating
was fixed at 4.75 m. The detector used was a scientific
CMOS camera viewing a 150-um-thick LiF:ZnS scintilla-
tor and had a spatial resolution of ~150 um. The exposure
time was 20 s per image, and the detector efficiency was
~0.4.

The integrated [along the x direction in Fig. 1(a)]
intensity profile recorded by the camera can be fit to a
cosine function
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FIG. 2. The measured contrast (red) and frequency (blue) of the
interference pattern at the camera as a function of the difference
between the grating separations. The uncertainties are purely
statistical. The plotted theoretical frequency (straight blue line)
derived from Eq. (1) shows good agreement with the measured
data.

I =A+ Bcos(2zf,y + ¢), (2)

where y is the pixel location on the camera, A is the mean,
B is the amplitude, and ¢ is the differential phase. The
contrast or “fringe visibility” is given by

~ max{/} —min{/} B

" max{I} + min{I} A’ 3)

Contrast as a function of the difference between the grating
separations (D, — D;) is plotted in Fig. 2. The distance
between the first and second grating was D; = 4.6 cm,
while the distance between second and third grating D, was
scanned. In the Methods section of [21], it is shown that the
contrast is dependent on the autocorrelation functions of
the first and third grating profiles and that, for ideal 50%
comb-fraction gratings, the contrast peaks when the auto-
correlation distances are half the grating period. For our
geometry, D, — D; =~ £1.2 cm values produce autocorre-
lation distances close to half a period for both first and third
gratings. The peak positions of the observed contrast
agree with this prediction. At equal separation distances,
D, = D,, the third grating is at the Fourier image location
and no fringes are expected. On Fig. 2, it can also be seen
that the fringe frequency is linearly proportional to the
difference of separation distances, as per Eq. (1).

The first and the third grating can be translated away
from the middle grating in synchronized intervals in order
to achieve large interferometer length. Figure 3 shows the
peak contrast as a function of the distance from the first to
the third grating. The data are the contrast of the empty
interferometer and illustrate how the contrast varies with
the length of the interferometer, possibly pointing to
coherence loss from increased air scattering and mechani-
cal vibrations [31]. At each new length, the contrast
optimization was performed by finely translating the third
grating. Contrast was observed with an interferometer
length of 4 m, which was the limit of our experimental
setup. An interferometer area of ~8 cm? is estimated for
that configuration.
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FIG. 3. Peak contrast, where D, — D; ~ 1.2 cm, as a function
of the distance between the first and third grating. The purely
statistical uncertainties are smaller than the individual points.

To observe phase shifts inside the three PGMI and quantify
the robustness of the setup, we performed “linear phase
stepping,” depicted in Fig. 4. This process verifies that the
phase shifts of the fringes from the grating movement agree
with expected phase stepping behavio—movement of the
grating by one period (2.4 um) causes a 2z phase shift. Here
the phase shift of the induced interference fringes is obtained
by parallel translation of the third grating with step sizes
smaller than the period of the gratings. It was observed that
the phase of the interference fringes linearly increases as
expected.

Placing a sample between the gratings allows for phase
and dark-field imaging [22,32]. For a rectangular sample of
6061 aluminum alloy, the linear attenuation of integrated
intensity calculated as -1In(Zgmpie/Iempry) and the normal-
ized contrast calculated as Cgmple/Cempry are shown in
Fig. 5. It is observed that the sample degrades the relative
contrast to 0.28, most likely due to small angle neutron
scattering off of the microstructure present in the alloy. The
images were obtained by the harmonic analysis method
described in [33].
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FIG. 4. Phase stepping. The phase of the interference fringes at
the detector is linearly varied by a parallel translation of the third
grating. The interferometer length was set to 2 m, and D, —
D, ~ 1.2 cm to optimize contrast. The third grating was then
translated along the grating vector [along the y direction in
Fig. 1(a)] from O to 5 um, in increments of 0.25 um.
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Sample imaging. (a) A rectangular sample of 6061 aluminum alloy was placed downstream from the second grating. (b) Linear

attenuation of integrated intensity. The shape of the sample and the hole in the corner are recognizable in the image. (c) Normalized
contrast. It is observed that the sample degrades the relative contrast to 0.28, most likely due to small angle neutron scattering off of the

microstructure present in the alloy.

The three PGMI presents a unique opportunity for
material characterization, as one can readily vary by orders
of magnitude the autocorrelation length used to probe the
sample. The method is analogous to the probing of
autocorrelation lengths with a two phase-grating interfer-
ometer [23], but the probed autocorrelation length in this
case is the separation length of the individual MZ inter-
ferometers depicted in Fig. 1(a),

Ahx L, (4)

where L, is the distance from the first grating to the sample.
Therefore, the unique ability of the three PGMI is accessing
larger autocorrelation lengths (>100 ym), which are
beyond the standard limits of the ultrasmall angle neutron
scattering and other neutron dark-field imaging methods.
Potential applications would be the probing of porous
mineral samples, oil or gas core samples, and man-made
porous scaffolds and materials.

The enclosed area of the interfering neutron paths is an
important parameter of a NI and its response to potential
gradients and forces. Perfect crystal interferometers are
limited to the practical size of commercially available
perfect or dislocation free Si ingots. For perfect crystals
with Bragg angles of ~z/4, an area of ~100 cm? can be
achieved for the particular monochromatic wavelength
[15]. The three PGMI has the unique opportunity to reach
and surpass the perfect crystal NI in this regard. In the
current setup, with 2 m separation between the gratings, the
enclosed area is ~8 cm? for 0.5 nm wavelength neutrons,
while it is ~15 cm? for largest perfect crystal NI available
at NIST for 0.271 nm neutrons. Reducing the grating
period to 600 nm and upgrading to a longer beam line that
can accommodate grating separation of 4.5 m will poten-
tially increase the area to ~160 cm?. Another key advan-
tage of the three PGMI is in terms of the accepted neutron
flux, as the uncertainties in the NI contrast measurements
are purely statistical. The neutron acceptance of a perfect
crystal is orders of magnitude smaller than the broadband
acceptance of the three PGMI.

One of the hallmark neutron interferometer experiments
was the “COW” experiment (named for the authors of
the first paper: Collella, Overhauser, and Werner), which
measured the phase shift of neutrons caused by their
interaction with Earth’s gravitational field [34], which is
a measure of the local acceleration due to gravity “g.” The
interferometer used had an area of ~8 cm?2, and the most
sensitive versions of the experiment were completed with
8g/g~ 1072 disagreement with expectations, but with a
statistical uncertainty of 5g/g ~ 1073 [35]. Recently, it has
been proposed that this disagreement may have been due to
Bragg-plane misalignments in the interferometer blades
[29]. Since the original COW experiments, g has been
measured using neutrons with a very cold neutron inter-
ferometer at the 8 x 107 level [36] and a spin-echo
spectrometer at the 107> level [37]. It should be noted
that the current benchmark of §g/g = 2 x 107! is set by
atom interferometry [2,38,39].

The three PGMI allows for a similar experiment, where the
gratings and the source slit are rotated in synchronization
around the beam axis, so as to vary the angle of the diffracted
path and thereby the induced gravitational potential.
Considering only the current setup with 107 mm™2s~!
neutron fluence rate and the 15 by 0.5 mm slit will yield
anincoming flux of N & 7.5 x 107 s~!'. With current contrast
C = 0.01 and detector efficiency n = 0.4, the uncertainty 6¢
in the phase (¢)) due to counting statistics (shot noise) is

¢ ~2.4 % 1073 rad (5)

1
- CyNt
in a t = 1 min measurement time. The phase due to Earth’s
gravitational acceleration (g = 9.8 ms—2) is

¢ = gT? (2—”> ~ 160 rad, (6)
2
with grating period A = 2.4 ym, and T = Dq,/v, is the
neutron flight time between the gratings, where v, =
800 ms~! is the peak neutron velocity. Thus 1 min of
measurement in the current setup would offer
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o¢ oy
L =2 x1.5%x 1075, 7
by (7)

Furthermore, a successful realization of the COW experi-
ment could lead to a similar experiment to measure big “G,”
the Newtonian constant of gravitation. The Committee on
Data for Science and Technology recommended value of
G = 6.67408(31) x 107" m3kg~!s72 with relative stan-
dard uncertainty of 4.7 x 107 [40] consists of several
discrepant experimental results. One can take advantage
of the long path of the three PGMI to place a large mass along
the neutron paths. The benefit over atom interferometry
would be precise knowledge of the neutron path with respect
to the source mass. In principle, this would allow for a
measurement using the three PGMI of 5G/G to a 107> level
or smaller.

There are many aspects of the three PGMI that we can
improve and expand. These include interferometer contrast,
which for our setup can reach up to 32% [21]. The factors
that reduce the contrast are the finite slit width, which is
estimated to reduce the contrast by between 11% and 18%
depending on the slit profile, the actual phase-shift profile
of G,, which determines the efficiency, and neutron
scattering over the long distance of the NI by air, or
intervening parts such as vacuum windows. Future work
will include direct assessment of individual grating dif-
fraction efficiencies to characterize and minimize these
losses. In addition to contrast gains, using a smaller grating
period and increasing the interferometer length will also
improve the sensitivity of the three PGMI.

We expect that the next generation of interferometers
based on the three phase-grating far-field design will open
new opportunities for the characterization of materials with
a large autocorrelation function and for the measurement
of the fundamental gravitational constants and other small
forces.
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