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Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an
intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both
the presence and the absence of localization, while in theories localization by disorder is usually assumed
a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A
series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this
unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime
along with the emergent integrals of motion in the dynamical system, which can be characterized by level
statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to
realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic
dimensions.
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Introduction.—The recent realizations of Floquet (or
discrete) time crystals have drawn much attention
[1–10]. A common feature of these systems is that a certain
physical observable Ô shows a rigid reduced periodicity
hÔiðtþ nTÞ ¼ hÔiðtÞ, n ≥ 2, compared with the Floquet
driving period T of the Hamiltonian Hðtþ TÞ ¼ HðtÞ. As
originally conceptualized in Refs. [11–13], “time crystals”
are regarded as a new addition to the concept of sponta-
neous symmetry breaking, for the temporal translation
symmetry missing for nearly a century.
Early discussions of time crystals [12–15] concluded

with a no-go theorem [16] forbidding such a phase in
equilibrium. Consequently, a new generation of periodi-
cally driven models were proposed [1–5], with results that
challenge our understanding of dynamical interacting
systems. Unlike the usual quasistatic examples such as
charge pumping [17–19] or lattice shaking [20,21], the
Floquet time crystal lives in the regime with large driving
amplitude and resonant frequencies, surprisingly robust
against chaotic behaviors, such as in turbulence [22–24].
It is therefore natural to ask what serves as the stabilizer
against butterfly effects and heating.
A key strategy in recent theories is to employ nonergodic

systems to resist the trivialization of dynamics due to
thermalization [2–5]. Besides the fine-tuned integrable
Hamiltonians, many-body localized (MBL) systems consist
of the most well-studied examples showing robust non-
ergodicity. As such, it is assumed a priori in most theories
that a stable time-crystal phase can occur only in the MBL
regime with strong spatial disorder [3,5,9]. However, a

recent experiment on nitrogen-vacancy centers performed
by Choi et al. demonstrated an alternative possibility [10],
where time crystals formed regardless of the delocalization
by the three-dimensional spin-dipolar interactions. It was
also emphasized that the system is not in a prethermal
regime [6,10]. The experimental breakthrough indicates the
tantalizing possibility of seeking for stable time crystals
without the aid of localization and the theoretical need to
understand the time-crystal phase in this regime.
The purpose of this work is to demonstrate through a

simple model that stable time crystals can exist in the
strongly interacting regime completely without disorder.
These Floquet ladders we propose represent a large class of
models including, as special cases, the quenched Ising chain
[2–5] discussed before. Within certain parameter regions,
the persisting double-periodic oscillation modulates with
time spans that scale exponentiallywith system sizes.Unlike
the “MBL time crystal” [2–5] which inherits integrability
from a static MBL Hamiltonian, these “clean time crystals”
exhibit emergent integrability through dynamics and are a
property of the Floquet evolution operator. Such a character
is illustrated by the level statistics and out-of-time-ordered
correlators (OTOC) in different parameter regimes.
Moreover, these phenomena even survive when the inter-
actions are modified to those that can be readily realized in
current cold atom experiments. The generality of our results
clearly suggests an exciting field of studying time crystals
in various clean systems with more intriguing properties.
Definition of time crystal.—Periodic motions exist widely

in dynamical systems, ranging from Rabi oscillations [25]
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to Josephson effects [26] and Zitterbewegung [27]. More
generally, if one picks an arbitrary initial state, the unitary
time evolution e−iHt=ℏ¼P

njnie−iEnt=ℏhnjmay fairly endow
the evolved state with certain oscillations. Therefore, restric-
tions must be applied to screen out some periodic motions
that are already well understood without involving a new
name. Here we give a phenomenological definition of a
nonequilibrium time crystal by selecting oscillations that are
emergent from many-body dynamics. Specifically, there
should exist a physical observable Ô and a class of initial
states jψi, such that

fðtÞ ¼ lim
L→∞

hψ jÔðtÞjψi ð1Þ

satisfy all of the three conditions: (A) time-translation-
symmetry breaking, which means fðtþ TÞ ≠ fðtÞ while
the Hamiltonian has Hðtþ TÞ ¼ HðtÞ; (B) rigidity: fðtÞ
shows a fixed oscillation frequency without fine-tuned
Hamiltonian parameters; (C) persistence: the nontrivial
oscillation with fixed frequency must persist to an infinitely
long time when first taking system size L to the thermo-
dynamic limit.
The above definition is inspired by making an analogy to

the familiar charge-density wave (CDW). Condition A rules
out oscillations trivially following the external drive,
which functions as “temporal lattice potentials.” The rigidity
of frequency in condition B requires many-body origins,
resembling the rigidity of a wave vector for density
modulation in CDW given by Fermi-surface nesting [28].
Condition C is added to distinguish a stable time crystal from
a quasistable, i.e., prethermal, one [6] or accidental oscil-
lations lasting for short periods. See also Refs. [2–5,7]
emphasizing different aspects of the definitions respectively.
Model.—We introduce a clean Floquet-ladder model

that turns out to satisfy all of the conditions (A–C). The
Hamiltonian is under binary quench with periodicity
T ¼ t1 þ t2, where during

t1∶ H1 ¼ −J0
XL

i¼1

ða†i bi þ b†i aiÞ;
J0t1
ℏ

¼ π

2
þ t1

ℏ
ε; ð2Þ

t2∶ H2 ¼ −J
XL

i¼1

ða†iþ1ai þ b†iþ1bi þ H:c:Þ

þ U
XL

i¼1

ðnAi nAiþ1 þ nBi n
B
iþ1Þ þ Δ

XL

i¼1

ðnAi − nBi Þ:

ð3Þ

See Fig. 1(a) for illustrations. Here a†i (b
†
i ) creates a particle

in leg A (B), nA;Bi ¼ a†i ai (or b
†
i bi) is the particle number

operator, and L is the number of sites in each leg. The
evolution operator at stroboscopic time is

UðnTÞ≡ ðUFÞn ¼ ðe−iH2t2=ℏe−iH1t1ℏÞn; ð4Þ

where UF is the Floquet operator. The physics is controlled
by dimensionless parameters ðεt1; Ut2; Jt2;Δt2Þ=ℏ, which
will be denoted simply as ðε; U; J;ΔÞ later on. To compare
with previousworks using an Ising chain [2–5],we note that,
for either spinless fermions or hard-core bosons, our model
maps to two coupled spin-1=2 XXZ chains and is therefore
generically different (in addition to the lack of disorder)
except in the special limit J ¼ 0 and nAi þ nBi ¼ 1 [29].
The general characters of our model are as follows. The

dynamics during t1 resembles single-particle Rabi oscil-
lations of particles between two chains U1 ¼ e−iH1t1=ℏ,
i.e., U†

1a
†
jU1 ¼ i cosðεÞb†j − sinðεÞa†j and U†

1b
†
jU1 ¼

i cosðεÞa†j − sinðεÞb†j . During t2, each chain is experiencing
nearest-neighbor interactions separately. Define the physi-
cal observable as the density polarization PðtÞ between two
chains:

PðtÞ ¼ 1

L

X

i

hψðtÞjP̂ijψðtÞi; P̂i ¼ a†i ai − b†i bi: ð5Þ

When ε ¼ 0, its periodicity is strictly 2T regardless of H2.
But the period of PðtÞ is unstable against perturbations ε to
the “Rabi frequency”: see the example of J ¼ U ¼ 0 in
Fig. 1(b). The essential feature is that the dynamics during
t2, though keeping PðtÞ unchanged, functions as a many-
body synchronizer for the 2T periodicity of PðtÞ and
rigidifies the temporal ordering, as we shall see.
Time-crystal signatures.—We first seek for solutions in a

large system using the density-matrix-renormalization-group
(DMRG) method. Remarkably, time-crystal behaviors show
up in a parameter region where the interaction strength U is
large enough (in units of ℏ=t2) and J=U is small, completely

(a)

(b)

FIG. 1. (a) Schematic plot for the Floquet ladder. Green and red
lines indicate the interchain [Eq. (2)] and intrachain couplings
[Eq. (3)], respectively, which alternate during the binary drive.
Blue dots represent occupied sites. In the time-crystal regime, the
density distribution in two chains shows rigid reduced periods
2T. (b) DMRG result for density polarization PðtÞ [Eq. (5)] under
perturbation ε ¼ 0.12 at stroboscopic time (lines are guides to the
eyes). The interaction U rigidifies the 2T periodicity, signifying a
time-crystal phenomenon. Here the lattice size is L ¼ 80 for each
chain, Δ ¼ 0.1, and the open boundary condition is used.
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without disorder or fine-tuning. Two examples with different
U ¼ 0.5 and 0.7 for J ¼ 0.2;Δ ¼ 0.1 are presented in
Fig. 1(b) for the system size L ¼ 80 on each chain. Here we
consider hard-core bosons, with the initial state that one of
the two legs is fully occupied, i.e., jψ ii ¼

Q
ia

†
i j0i. When

the “Rabi frequency” is perturbed by ε ¼ 0.12, the oscil-
lation frequency is indeed locked to 2T. In Supplemental
Material [29], we checked the longer time behavior for a
smaller system (L ¼ 20) using DMRG, which shows that
the amplitudes cease to decay around t=T ∈ ½35; 45� and
remain almost a constant. We have also checked that a slight
variation of Hamiltonian parameters or the initial state does
not change the 2T periodicity [29]. Thus, conditions A and B
are both met.
To further understand the DMRG result and to access

late time behaviors, we next turn to exact diagonalization
for the same initial state with the periodic boundary
condition. A dramatic contrast for systems in and out of
the time-crystal regime is found in their finite-size scalings.
Starting from isolated Rabi oscillators H2 ¼ 0, a chaotic
regime is reached immediately upon turning on weak
interactions U; see Fig. 2(a1). After an initial period
t=T ≈ 10, the many-body physics sets in and the oscillation
becomes nonuniversal for different L. Especially for weak
drive J0 ¼ 0.22, the oscillation amplitude decays for larger
L, signifying a thermalizing behavior. However, for driv-
ings near J0 ¼ π=2þ ϵ, further increasing interaction
strength U leads to a time-crystal regime with fixed
period-2T oscillations, consistent with DMRG results.
For a much later time, the oscillation amplitude shows

an overall envelope shape [Fig. 2(a2) inset]. This is because
(i) the finite-size effects lead to a tiny deviation of the
oscillation period from 2T [4], and (ii) the oscillation
amplitudes are plotted only at stroboscopic time [29]. As
expected, the envelope’s length expands exponentially with
the increasing system size (Fig. 2), indicating an exact 2T
periodic oscillation in the thermodynamic limit and ful-
filling the requirement (C).
The real-time evolution can be performed only up to a

finite time span, and one may wonder whether different
characters would show up in the next moment. Thus, as
complements, we consider the correlation function in the
frequency domain [39]:

CðωÞ ¼
X∞

N¼−∞

e−iωNT

2π

X

n

hωnjP̂ðNTÞP̂ð0Þjωni ð6Þ

¼
X

mn

δðω − ωmnÞAðωmnÞ: ð7Þ

Here P̂ ¼ ð1=LÞPiP̂i, UFjωmi ¼ eiωmT jωmi, and the
spectral function AðωmnÞ¼jhωmjP̂jωnij2, ωmn¼ωm−ωn.
We emphasize that a direct calculation of spectral function
AðωmnÞ at arbitrary Floquet eigenstates gives us infinite
time response characters to arbitrary initial states. The time-
crystal phase is highlighted by a strong peak of Aðω0Þ at
ω0T ¼ π [Fig. 2(b3)] corresponding to 2T periodic motions
of PðtÞ, compared with no or weak peaks in other regimes
[Figs. 2(b1)and 2(b2)]. For finite-size systems, the shrink-
ing deviation jω0T − πj ∼ e−αL [Fig. 2(b3)] corresponds to
the expanding modulation length N0 for PðtÞ.

(a1) (b1) (c1) (d1)

(d2)

(c2)

(c3)

(b2)

(b3)
(a2)

FIG. 2. (a1),(a2) Histogram of PðtÞ. In the time-crystal regime, PðtÞ shows an envelope modulation for the amplitude of 2T-periodic
oscillations. The modulation length N0 ≡ t0=T [set by Pðt0Þ decreasing below 10% of the initial value] scales exponentially with the
system size. (b1)–(b3) Spectral weight AðωÞ for temporal correlation functions, where ω carries the unit 1=T. (We plotted L ¼ 6 for
example, and Δ ¼ 0.1.) (c1)–(c3) Distribution of level spacing ratios (L ¼ 9). It crosses from a GOE type deep in the thermalizing
regime (c1) to the Poisson limit in the time-crystal regime (c3). (d1),(d2) OTOC with site i ¼ 1 and for different sites j’s. The system
size is L ¼ 7 with the periodic boundary condition. The initial state is that one of the two chains is fully occupied.
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Finally, let us summarize the effects of various param-
eters. Interaction U serves to restore the 2T periodic
oscillation perturbed by ε. The intrachain tunneling J helps
restore the major oscillation frequency to π=T but also
enhances the amplitude of oscillations at other frequencies
[40]. This is why J=U needs to be small. Finally, Δ is
essentially introduced to break the Hamiltonian integra-
bility at the special limit J ¼ 0; nAi þ nBi ¼ 1 [29]. In
practice, the system is very insensitive to the change of
Δ, so it is set to a fixed value throughout this work.
Emergent Floquet integrability.—The coupling between

two chains H1 breaks the integrability of H2, and the linear
combinations αH1 þ βH2 should exhibit thermalizing
behaviors in late-time dynamics if localization is absent.
Then, how do we understand the nontrivial dynamics in the
time-crystal regime? The key point is that when the system
is under strong drive, i.e., the Hamiltonian parameters are
no longer much smaller than Floquet driving frequencies,
the Magnus expansion of UF is no longer dominated by the
linear terms of static Hamiltonians, and it turns out that
emergent Floquet integrability shows up in the time-crystal
regime as a property of UF.
We first look at level statistics as a diagnostics of

integrability [41]. Arrange the Floquet quasienergies αm ∈
ð0; 2πÞ∶UFjαmi ¼ eiαm jαmi such that αmþ1 > αm, define
the level spacings δm ¼ αmþ1 − αm, and further the ratios
rn ¼ maxðδm; δmþ1Þ=minðδm; δmþ1Þ; we typically end up
with two distributions of rn with probability PðrnÞ. In the
integrable limit, such as in MBL systems, we expect a
Poisson distribution PðrÞ ¼ 2=ð1þ rÞ2 with mean values
hri ≈ 0.386. Contrarily for thermalizing systems, level
repulsion gives a Gaussian orthogonal ensemble (GOE)
for PðrÞ ¼ ð27=4Þðrþ r2Þ=ð1þ rþ r2Þ5=2 with the mean
value hri ≈ 0.536. From Figs. 2(c1)–2(c3), we see that as
one goes from the thermalizing regime (c1), (c2) to deep in
the time-crystal regime (c3), the distribution gradually
crosses from the GOE type to the Poisson limit.
To further understand the emergent integral of motion,

we compute the out-of-time-order correlators (OTOC):

FðtÞ ¼ hW†
i ðtÞV†

jð0ÞWiðtÞVjð0Þi
hW†

i ðtÞWiðtÞihV†Vi : ð8Þ

Here i, j are site indices, and operators Wi, Vj are both
chosen as local density polarization Pi, Pj, for reasons
specified later. The average is taken on the state of interest,
i.e., the initial state. Such a correlator has the intriguing
property of quantifying quantum chaos and has been used
extensively in recent works ranging from gravity theories
[42] to quantum many-body systems [43–45]. Several
experimental measurements [46] have also been performed
recently.
For isolated Rabi oscillators withH2 ¼ 0,WiðtÞ remains

local and commutes with Vj≠i for all time, giving a constant

jFðtÞj. In contrast, OTOC in thermalizing systems should
decay to and remain a small value [44]. But if the system
possesses integrals of motion with Wi, Vj having a large
overlap with them, FðtÞ would remain close to unity.
Accordingly, we find a sharp contrast of OTOC in and
out of the time-crystal phases, as shown in Figs. 2(d1) and
2(d2), respectively. The fact that jFðtÞj for Pi remains a
large value prompts us to suggest the possible form for
the emergent Floquet integral of motion Iα ¼ P

ik
α
i P̂i:

fUF; Î
αgþ ¼ Oðe−LÞ !L→∞

0, when the parameters are within
the time-crystal regime, where P̂i is defined in Eq. (5). As
we do not have localizations, the configuration for the
proportionality coefficients fkαi ∈ Cg can be extended in
space.
Two caveats are in order. First, the integrals of motion in

our system may not be complete, as can be reflected in the
imperfect Poisson distribution in Fig. 2(c3) and an irregular
pattern of hriwhen the system sizes change. This resembles
the “partial thermalization” as in the mobility edge of
MBL [47,48] or in quantum disentangled liquids [49–51].
Second, the characters we show differ from the typical
description of “prethermal time crystals” in Ref. [6], where
oscillations cease to exist within a fixed time regardless of
the system size and a longer thermalization time relies on
weaker interactions. However, our time-crystal phase
requires strong interactions, and the temporal correlator
in Fig. 2(b3) with a dominant peak clearly dictates
persisting oscillations to an infinite time, as one can verify
that the same histogram in the inset in Fig. 2(a2) repeats
with modulation periods N0.
Experimental realization and generality.—Since the

time-crystal phase does not rely on the integrability of
static Hamiltonians, we expect such phases to persist when
the models in Eqs. (2) and (3) are generalized. This is
verified by the following results for experimental proposals
using dipolar gases or alkaline-earth atoms with spin-
SUðNÞ symmetry.
Dipolar atoms [52–54] or molecules [55–59] have been

successfully trapped in current cold atom experiments. In
our case, the interaction within each chain can be written
as [29]

Vdip ¼
X

ij

ðUdip=x3ijÞðnAi nAj þ nBi n
B
j Þ; ð9Þ

where xij is the distance between lattice sites i, j along a
chain and Udip is the interaction strength. This term replaces
the nearest-neighbor interaction proportional toU in Eq. (3).
In particular, one can polarize the dipolar gases along
suitable directions by electric fields such that there is
vanishingly small interaction between two chains [29].
Alternatively, using SUðNÞ fermions [60–63], one can

engineer an “infinite-ranged” interaction

VSUðNÞ ¼ U
X

m<m0
ðnAmnAm0 þ nBmnBm0 Þ; ð10Þ
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where the particle at each “site” m interacts with all
particles at other sites m0. Here we have exploited the
concept of “synthetic dimensions” [60,64] where one uses
the internal degree of freedom, i.e., spins m ¼ −S;
−Sþ 1;…; S, to play the role of different lattice sites.
For atom species trapped in current experiments, the spin S
can be 9=2 for 87Sr [61,62] or 5=2 for 131Yb [60,63]. The
SUðNÞ particle gains its name as the interaction (10) among
different spin species preserves the SU(N) symmetry. One
therefore needs only a tight double-well potential accom-
modating totally N ¼ ð2Sþ 1Þ particles in its lowest
orbital state if we have half filling in the initial state.
We refer the readers to Supplemental Material [29] for

details regarding the lattice setup, quench process, and
parameter estimations. Here we present a phase diagram for
each of these two cases in Figs. 3(a) and 3(b), respectively.
We clearly see that time-crystal phases are stabilized by
strong interactions.
Conclusion.—We have shown through explicit models

that a stable time-crystal phase exists without the need for
fine-tuning or localization by disorder. The exponential
scaling of the modulation length with respect to the system
size, together with the dependence on a strong interaction
strength, imply that the clean-Floquet time-crystal phase is
different from the usual prethermal state [6]. The existence
of such a phase is of genuine dynamical origin, where
certain integrals of motion emerge in the Floquet operator
instead of being in the static Hamiltonian. Therefore, it
points to a tantalizing possibility of using a dynamical
process to preserve quantum information. Finally, as being
confirmed in the experimental proposals, the time-crystal
behavior is not restricted to a specific model. Thus, it is

intriguing to generalize the present discussions to systems
with more complexity in parallel to the usual spatial
crystals. Studying time crystals in various clean systems
will surely yield new principles and phenomena of a
nonequilibrium nature.
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Note added.—Recently, we noted two independent works
for Floquet systems with 3D dipolar [65] and 1D [66]
infinite-ranged interactions, both of which also found time-
crystal signatures.
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