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We argue that the quenched ultracold plasma presents an experimental platform for studying the
quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We
consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules,
ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state
fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested
phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der
Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered
nonequilibrium physics of this system.
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Introduction.—Quantum mechanics serves well to
describe the discrete low-energy dynamics of isolated
microscopic many-body systems [1]. The macroscopic
world conforms with the laws of Newtonian mechanics
[2]. Quantum statistical mechanics [3] bridges these realms
by treating the quantum mechanical properties of an
ensemble of particles statistically and characterizing the
properties of the system in terms of state properties
(temperature, chemical potential, etc.), in an approach that
implies a complex phase space of trajectories with ergodic
dynamics [4]. However, this is not always the case, and the
macroscopic description of quantum many-body systems
that fail to behave as expected statistically remains today as
a key unsolved problem [5,6].
Ergodicity, when present in an isolated quantum many-

body system, emerges as the system thermalizes in a unitary
evolution that spreads information among all the subspaces
of the system. The subspaces act as thermal reservoirs for
each other. Most known many-body systems thermalize in
this fashion, obeying the eigenstate thermalization hypoth-
esis [4,6–10], which holds that the eigenstates of corre-
sponding many-body Hamiltonians are thermal.
Exceptions include fine-tuned integrable systems [11],

and the class of so-called many-body localized systems
[6,12], which have attracted intense interest in recent years.
Such systems do not thermalize at finite energy densities
and are therefore nonergodic. Disorder in a landscape of
interactions preserves memory of the initial local condi-
tions for infinitely long times. Many-body localized phases
cannot be understood in terms of conventional quantum
statistical mechanics [13,14].
Many-body localization has been observed in deliber-

ately engineered experimental systems with ultracold atoms

in one- and two-dimensional optical lattices [15–20]. In
such cases, tuning of the lattice parameters allows inves-
tigation of the phase diagram of the system as a function of
disorder strength. However, such ultracold systems suffer
from decoherence, confining localization to short time
scales and low energy densities.
It is important to determine experimentally whether

conditions exist under which many-body localization can
persist for long times at finite temperatures, and to under-
stand if such a robust macroscopic quantum many-body
state can occur naturally in an interacting quantum system
without deliberate tuning of experimental parameters. Such
a realization could pave the way to exotic quantum effects,
such as entangled macroscopic objects and localization-
protected quantum order [21,22], which could have societal
and technological implications [23].
Motivated by these questions, we have explored the

quenched ultracold molecular plasma as an arena in which
to study quantum many-body effects in the long-time and
finite energy-density limits [24,25]. The ultracold plasma
system offers complexity, as encountered in quantum
materials, but evolves from state-selected initial conditions
that allow for a description in terms of a specific set of
atomic and molecular degrees of freedom.
Experimental work has recently established laboratory

conditions under which a high-density molecular ultracold
plasma evolves from a cold Rydberg gas of nitric oxide,
adiabatically sequesters energy in a reservoir of global
mass transport, and relaxes to form a spatially correlated,
strongly coupled plasma [25,26]. This system naturally
evolves to form an arrested phase that has a long lifetime
with respect to recombination and neutral dissociation, and
a very slow rate of free expansion. These volumes exhibit
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state properties that are independent of the initial quantum
state and density, parameters that critically affect the time
scale of relaxation, suggesting a robust process of self-
assembly that reaches an arrested state, far from conven-
tional thermal equilibrium.
Departure from classical models suggests localization in

the disposition of energy [25]. In an effort to explain this
state of arrested relaxation, we have developed a quantum
mechanical description of the system in terms of a power
law interacting spin model, which allows for the possibility
of slow dynamics or many-body localization.
Experiment.—The double-resonant pulsed-laser excita-

tion of nitric oxide entrained in a supersonic molecular
beam forms a characteristic Gaussian ellipsoid volume of
state-selected Rydberg gas that propagates in z with a well-
defined velocity, longitudinal temperature (T jj ¼ 500 mK),
transverse temperature (T⊥ < 5 mK), and precisely known
initial density in a range from ρ0 ¼ 1010 to 1012 cm−3 (see
Fig. 1 and Refs. [27,28]).
Rydberg molecules in the leading edge of the nearest-

neighbor distance distribution interact to produce NOþ ions
and free electrons [49]. Electron–Rydberg molecule colli-
sions trigger an ionization avalanche on a time scale from
nanoseconds to microseconds depending on initial density
and principal quantum number n0.
Inelastic collisions heat electrons and the system proceeds

to a quasiequilibrium of ions, electrons, and high-Rydberg
molecules of nitric oxide. This relaxation and the transient
state it produces entirely parallels the many observations of
ultracold plasma evolution in atomic systems under the
conditions of a magneto-optical trap [50].
We see this avalanche unfold directly in sequences of

density-classified selective field ionization spectra measured
as a function of delay after the initial formation of the
Rydberg gas [25]. For a moderate ρ0 ¼ 3 × 1011 cm−3, the
ramp-field signal of the selected Rydberg state, n0 gives way
on a 100 ns time scale to form the selective field ionization
spectrum of a system in which electrons bind very weakly to
single ions in a narrow distribution of high Rydberg states or
in a quasifree state held by the plasma space charge [28].
The peak density of the plasma decays for as much as

10 μs until it reaches a value of ∼4 × 1010 cm−3, indepen-
dent of the initially selected n0 and ρ0. Thereafter, the
number of charged particles remains constant for at least a
millisecond. On this hydrodynamic time scale, the plasma
bifurcates, disposing substantial energy in the relative
velocity of plasma volumes separating in �x, the cross-
beam axis of laser propagation [26].
The avalanche to plasma proceeds at a rate predicted

with accuracy by semiclassical coupled rate equations
[25,28]. This picture also calls for the rapid collisional
relaxation of Rydberg molecules, accompanied by an
increase in the electron temperature to 60 K or more.
Bifurcation accounts for a loss of electron energy. But the
volumes that remain cease to evolve, quenching instead to

form an arrested phase that expands slowly, at a rate
reflecting an initial electron temperature no higher than a
few degrees kelvin. These volumes show no sign of loss
owing to the fast dissociative recombination of NOþ ions
with electrons predicted classically for low Te [51], or
predissociation of NO Rydberg molecules, well known to
occur with relaxation in n [52].
Thus, from the experiment, we learn that 5 μs after

avalanche begins, Rydberg relaxation ceases. We detect no
sign of ion acceleration by hot electrons and the surviving
number of ions and electrons remains constant for the
entire remaining observation period, extending to as long as
1 ms. With the vast phase space available to energized
electrons and neutral nitrogen and oxygen atom fragments,
this persistent localization of energy in the electrostatic
separation of cold ions and electrons represents a very
significant departure from a thermalized phase. Current
experimental evidence thus points strongly to energy
localization and the absence of thermalization within the
accessible time of the experiment.
Molecular physics of the arrested phase.—Direct mea-

surements of its electron binding energy together with its
observed expansion rate establish experimentally that the
bifurcated plasma contains only high-Rydberg molecules
(n > 80) and NOþ ions in combination with cold electrons
(initial Te < 5 K) bound by the space charge. As noted
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FIG. 1. (a) Double-resonant selection of the initial quantum
state of the n0fð2Þ Rydberg gas. (b) Laser-crossed differentially
pumped supersonic molecular beam. (c) Selective field ionization
spectrum after a 500 ns evolution, showing the signal of weakly
bound electrons combined with a residual population of 49fð2Þ
Rydberg molecules. After 10 μs, this population sharpens to
signal only high-n Rydberg molecules and plasma electrons.
(d) Integrated electron signal as a function of evolution time from
0 to 160 μs. Note the onset of the arrested phase before 10 μs.
Time scale compressed by a factor of 2 after 80 μs. (e) x, y-
integrated images recorded after a flight time of 400 μs with
n0 ¼ 40 for initial Rydberg gas peak densities varying from
2 × 1011 to 1 × 1012 cm−3. All of these images exhibit the same
peak density: 1 × 107 cm−3.
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above, semiclassical models mixing these species in any
proportion predict thermal relaxation, electron heating,
expansion, and dissipation on a rapid time scale with very
evident consequences completely unobserved in the experi-
ment. Instead, beyond an evolution time of 10 μs or less,
we find that the plasma settles in a state of arrested
relaxation of canonical density and low internal energy
manifested by a slow free expansion.
To describe this apparent state of suppressed relaxation,

we proceed now to develop a formal representation of the
predominant interactions in this arrested phase. Under
the evidently cold, quasineutral conditions of the relaxed
plasma, ions pair with extravalent electrons to form dipoles
that interact as represented schematically in Fig. 2.
Assuming an intermolecular spacing that exceeds the

dimensions of individual ion-electron separations, we can
describe the Coulomb interactions represented in Fig. 2 in
terms of a simple Hamiltonian:

H ¼
X

i

�
P2
i

2m
þ hi

�
þ
X

i;j

Vij; ð1Þ

where hi describes the local relationship of each electron
with its proximal NOþ core. This local representation
extends to account for the interactions of a bound extrav-
alent electron with vibrational, rotational, and electronic
degrees of freedom of the core, as described, for example,
by multichannel quantum defect theory [53]. Each ion-
electron pair has momentum Pi and Vij ≡ Vðri − rjÞ
describes the potential energy of the interacting multipoles,
represented in Fig. 2 to lowest order as induced dipoles
with an interaction defined by Vdd

ij ¼ ½di · dj − 3ðdi · rijÞ
ðdj · rijÞ�/r3ij, where for simplicity we average over the
anisotropy of the dipole-dipole interaction.
The plasma also very likely includes ion-electron pairs of

positive total energy. This implies the existence of local
Hamiltonians of much greater complexity that define quasi-
Rydberg bound states with dipole and higher-order
moments formed by the interaction of an extravalent
electron with more than one ion.

Representing the eigenstates of hi by jeii, we can write a
reduced Hamiltonian for the pairwise dipole-dipole inter-
actions [54,55] in the arrested phase:

Hdd ¼
X

i

P2
i

2m
þ
X

i;j

Vdd
ij ; ð2Þ

where we evaluate Vdd
ij in the jeii basis.

Note that such a Hamiltonian usually refers to the case
where a narrow bandwidth laser prepares a Rydberg gas in
which a particular set of dipole-dipole interactions gives
rise to a small, specific set of coupled states [56–58]. By
contrast, the molecular ultracold plasma forms spontane-
ously by the processes of avalanche and quench to populate
a great many different states that evolve spatially without
the requirement of light-matter coherence or reference to a
dipole blockade of any kind.
This system relaxes to a quenched regime of ultracold

temperature, from which it expands radially at a rate of a
few meters per second. Dipolar energy interactions proceed
on a much faster time scale [59–62]. Cross sections for
close-coupled collisions are minuscule by comparison [63].
We can thus assume that the coupled states defined by
dipole-dipole interactions evolve adiabatically with the
motion of ion centers.
This separation of time scales enables us to write an

effective Hamiltonian describing pairwise interactions that
slowly evolve in an instantaneous frame of slowly moving
ions and Rydberg molecules: Heff ¼ P

P
i;jV

dd
ij , where P

represents a projector onto the low-energy degrees of
freedom owing to dipole-dipole coupling.
Effective many-body Hamiltonian.—Considering pair-

wise dipolar interactions between ion-electron pairs, we
choose a set of basis states je1i, je2i;…, jeLi that spans the
low-energy regime. The superscript with the lower (higher)
integer label refers to the state with larger (smaller) electron
binding energy.
Quenching gives rise to a vast distribution of rare

resonant pairwise interactions, creating a random potential
landscape. Dipole-dipole interactions in this dense mani-
fold of basis states cause excitation exchange. In the
disorder potential, these processes are dominated by low
energy-excitations involving L states in number, where we
expect L to be small (from 2 to 4). The most probable
interactions select L-level systems composed of different
basis states from dipole to dipole.
In a limit of dipole-dipole coupling, we can represent

pairwise excitations by spins with energies ϵi and exchange
interactions governed by an XY model Hamiltonian [28,64]
that describes these interactions in terms of their effective
spin dynamics:

Heff ¼
X

i

ϵiŜ
z
i þ

X

i;j

JijðŜþi Ŝ−j þ H:c:Þ; ð3Þ

NO +

NO
+

e-

e-

rij
di

dj

FIG. 2. Schematic representation of NOþ core ions, paired with
extravalent electrons to form interacting dipoles di and dj,
separated by rij ¼ ri − rj.
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where Ŝ in each case denotes a spin-L operator defined as
Ŝγ ¼ ℏσ̂γ/2, for which σγ is the corresponding spin-L Pauli
matrix that spans the space of the L active levels and
γ ¼ x, y, or z. H.c. refers to the Hermitian conjugate.
This Hamiltonian reflects both the diagonal and off-

diagonal disorder created by the variation in L-level system
from dipole to dipole. The first term in Heff describes the
diagonal disorder arising from random contributions to the
on-site energy of any particular dipole owing to its random
local environment. In spin language,

P
iϵiŜ

z
i represents a

Gaussian-distributed random local field of width W.
The representative selective field ionization spectrum in
Fig. 1 directly gauges a W of ∼500 GHz for the quenched
ultracold plasma.
In the second term, Jij ¼ tij/r3ij determines the off-

diagonal disordered amplitudes of the spin flip-flops. To
visualize the associated disorder, recognize that the second
term varies as tij ∝ jdijjdjj, where every interaction selects
a different di and dj. Over the present range ofW, a simple
pair of dipoles formed by s and p Rydberg states of the
same n couple with a tij of 75 GHz μm3 [65]. Note that tij
falls exponentially with the difference in principal quantum
numbers, Δnij [66].
Induced Ising interactions.—In the limit jJijj ≪ W most

appropriate to the experiment, sequences of interactions
can add an Ising term that describes a van der Waals shift
of pairs of dipoles [28,67]. These processes occur with an
amplitude Uij ≈ J2ijJ̃/W

2, where J̃ estimates Jij, for an
average value of tij at an average distance separating the
spins. Uij is inherently random owing to the randomness
in Jij.
Together, these results lead us to a general spin model

with dipole-dipole and van der Waals interactions [28]:

Heff ¼
X

i

ϵiŜ
z
i þ

X

i;j

JijðŜþi Ŝ−j þ H:c:Þ þ
X

i;j

UijŜ
z
i Ŝ

z
j;

ð4Þ
where Uij ¼ Dij/r6ij and Dij ¼ t2ijJ̃/W

2.
Discussion: localization versus glassy behavior and

slow dynamics.—The complexity of this Hamiltonian
places an exact solution of Eq. (4) beyond reach for the
conditions of the plasma. But we can gauge some likely
properties of such a solution by analogy to published work
on simpler systems.
In the single-spin limit, this Hamiltonian reduces to

the dipolar XY model, which has been studied by locator
expansion methods measuring the probability of resonant
pairs [68,69]. When Jij scales by a power law α that equals
the dimension d, a single-spin model with diagonal dis-
order displays critical behavior characterized by extended
states with subdiffusive dynamics [68,69]. Dipolar systems
in three dimensions can form extended states, but yet
exhibit nonergodic behavior [70].

Off-diagonal disorder in the presence of long-range spin
flip-flop interactions of arbitrary order in one dimension
yields algebraic localization as opposed to exponential
Anderson localization, challenging the generality of the
rule that says systems must delocalize for α ≤ d [71].
The many-body problem is more involved, because the

van der Waals term forms off-diagonal matrix elements
in the resonant pair states [72]. This mechanism couples
distant resonant pairs, transferring energy from one pair to
the other to cause delocalization. A study of power-law
coupled systems predicts that spin flip-flops (order α) and
spin Ising interactions (order β) in an iterated pair con-
figuration in which β ≤ α will localize for β/2 > d [73].
A locator expansion approach developed for β > α

applied to Eq. (4) confined to diagonal disorder predicts
a critical dimension dc ¼ 2 [67]. For the case of d > dc,
this theory holds that a diverging number of resonances
drives delocalization whenever the number of dipoles
exceeds a critical value Nc.
A system described by Eq. (4) for the conditions under

which we observe arrest requires a number of dipoles
Nc ¼ ðW/J̃Þ4 ≈ 3 × 109 to delocalize [28]. This theoretical
threshold deemed necessary for resonance delocalization
exceeds the number of molecules found experimentally in
the quenched ultracold plasma by more than an order of
magnitude [28].
Moreover, as Nandkishore and Sondhi have pointed out

[74], locator expansion arguments might not hold gener-
ally, and low-order power law interactions could well give
rise to many-body localization in higher dimensions. Their
arguments build on the idea that, in many systems, long-
range interactions can drive a system to form correlated
phases in which emergent short-range interactions can be
well characterized by a locator expansion perturbation
theory approach. In this context, many-body localization
with long-range interactions in higher dimensions becomes
quite possible.
A related study has investigated the behavior of a three-

dimensional dipolar system of nitrogen-vacancy color
centers in diamond in the presence of on-site disorder
[75]. The experimental results point to slow dynamics
consistent with our observations.
The forgoing analysis suggests that the model defined by

Eq. (4) ought to exhibit some form of localization or at least
very slow dynamics, since all the terms in the Hamiltonian
are disordered and the terms responsible for delocalization
(Jij and Uij) are expected to be much smaller thanW. This
seems to be what we see in the experiment.
Concluding remarks.—This work has argued that the

quenched ultracold plasma forms an arrested phase pos-
sibly governed by quantum disordered nonequilibrium
physics in long-time and finite energy-density limits. In
an effort to support this notion, we have suggested that the
evident and certainly present quantum dipolar interactions
can be usefully described by a disordered spin model and
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have analyzed its properties in the limit of strong on-site
disorder by analogy with theoretical results for simpler
dipolar systems.
Considering the challenge of scale confronting the

accurate numerical solution of large disordered problems
and the apparent contradiction of available theoretical
results [76–79], experimental systems stand to play an
important role in understanding localization and slow
dynamics. The results presented here call in particular
for further experimental and theoretical efforts to probe the
physics of localization in long-range interacting systems of
higher dimension. The quenched ultracold plasma appears
to offer a view of large-scale quantum dynamics in a regime
inaccessible to optical lattices and solid-state materials.
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