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Many quantum information protocols rely on optical interference to compare data sets with efficiency or
security unattainable by classical means. Standard implementations exploit first-order coherence between
signals whose preparation requires a shared phase reference. Here, we analyze and experimentally
demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for
optical signals with a random relative phase. This provides a robust protocol implementation primitive
when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected
optical energy, optimal operation is typically reached in the few-photon regime.
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Optical systems, in addition to being the workhorse of
modern telecommunication, provide a natural platform to
implement quantum-enhanced protocols for information
transfer and processing between distant parties. Quantum
strategies can provide authentication or reduce the com-
munication complexity of certain tasks, in which large
distributed data sets need to be processed to infer a
relatively small amount of information [1,2]. Examples
include quantum digital signatures [3] and quantum finger-
printing [4]. These protocols share a primitive that consists
in imprinting the input data onto the modal structure of
transmitted fields, e.g., in the form of phase patterns, and
interfering the received signals, as shown in Fig. 1.
Different hypotheses, e.g., the instances of identical and
unequal inputs, are mapped onto distinct ranges of the
interference visibility, which can therefore serve as the
basis for hypothesis testing. Strikingly, optical signals
sufficient to realize the quantum scheme may not have
the capacity to carry information necessary to implement
the classical protocols with the matching confidence level.
This enhancement, stemming from the interplay between
the wave and particle properties of light exploited in
quantum protocols, can advantageously change the scaling
of resources required to perform the task as well as ensure
security.
As recently pointed out [5,6] and demonstrated exper-

imentally [7–10], the protocol primitive described above
can be realized efficiently with coherent light beams and
first-order interference. This implementation uses laser
light sources and is robust against attenuation introduced
by optical channels transmitting the signals, but it requires
phase stability between the sending parties. In certain
scenarios a shared phase reference may be unavailable
or very difficult to furnish. An alternative may be to
resort to Hong-Ou-Mandel interference between single
photons, which has been exploited in proof-of-principle

demonstrations of quantum communication complexity
protocols [11,12]. However, a practical implementation
may require single photon sources with long coherence
times and would be inefficient for high channel attenuation.
The latter impairment affects also a realization based on
weak classical states with a random global phase [13].
In this Letter we present a strategy to carry out

optical hypothesis testing based on the visibility of higher-
order interference between classical fields with a random
relative phase. This approach concurrently benefits from
conventional optical signal generation techniques, removes
the need for a shared phase reference, and ensures robust-
ness against channel attenuation. The performance is

FIG. 1. An interferometric primitive for visibility-based hypoth-
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The signals are brought to interference at a 50∶50 beam splitter
whose output ports are monitored by photodetectors. The outcome
of a single repetition of an interferometric measurement is a pair of
integers k, k0 specifying the number of counts registered by each of
the detectors over the duration of the signals.
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characterized using average error probability, whose
asymptotic behavior is investigated with the help of a
refined Chernoff bound [14,15]. Interestingly, we show that
when the protocol cost is quantified in terms of the total
transmitted optical energy, the optimal strategy is to realize
multiple repetitions of the interference visibility measure-
ment in the few-photon regime with a determination of the
complete photocount statistics.
Let us first consider interference between two mutually

coherent optical signals. Each signal has the form of a pulse
sequence depicted in Fig. 1 and carries optical energy n̄=2
expressed in photon number units. The receiver combines
the signals on a balanced beam splitter. The time-integrated
light intensity at the two output ports of the beam splitter
labeled with indices “þ” and “−” can be written as
I�ðVÞ ¼ ηn̄ð1� ReVÞ=2, where η is the channel trans-
mission for each of the signals [16]. Here, V is the
interference visibility that carries information about the
relation between the input data sets. In the ideal case it is
equal to the overlap V ¼ R

dtuðtÞv�ðtÞ between the nor-
malized waveforms uðtÞ and vðtÞ describing the two
received signals. For identical inputs V ¼ 1, which corre-
sponds to completely destructive interference at the −
output port. Hence, registering a photocount at that port
unambiguously indicates that the inputs were unequal. This
observation underpins the quantum fingerprinting protocol,
which aims at deciding whether data sets in possession of
two parties are identical or different while revealing the
smallest possible amount of information to the external
referee. The protocol employs classical error correction to
guarantee that for any pair of unequal inputs the visibi-
lity remains below a certain threshold value. Given that
experimental imperfections, such as detector dark counts
and misalignment of optical beams, lower the effective
visibility [16], the hypotheses of identical or unequal inputs
correspond to two distinct ranges of the visibility parameter
separated by a gap. In order to perform a practical test
between these two hypotheses one needs to devise a
decision rule based on the measured photocount statistics.
Let the detectors at the output ports of the beam splitter

be able to resolve up to K photocounts over the signal
duration. The probability p�

k of registering k photocounts
on one detector reads p�

k ðVÞ ¼ exp½−I�ðVÞ�½I�ðVÞ�k=k!
for k ¼ 0; 1;…; K − 1 and p�

KðVÞ ¼ 1 −
P

K−1
k¼0 p

�
k ðVÞ.

Nonunit efficiency of the detectors can be included in
the channel transmission η. Suppose now that the signal
pairs are received with a promise that the visibility takes
only one of two equiprobable values V1 or V2. For the
fingerprinting protocol one value corresponds to identical
inputs, while the second one can be taken as the highest
visibility occurring in the case of unequal inputs. The task
is to discriminate between the two visibility hypotheses on
the basis of the photocount sample collected in N repeti-
tions of the interferometric measurement. The probability ε
of erroneously identifying the actual visibility is upper

bounded by the so-called Chernoff bound ε≤expð−NCÞ=2
[14], where C stands for the Chernoff information given
explicitly by

C ¼ − log

�
min
0≤α≤1

� XK
k;k0¼0

½Pkk0 ðV1Þ�α½Pkk0 ðV2Þ�1−α
��

: ð1Þ

In the above expression, the summation is carried out over
all possible measurement outcomes, which in our setup
have the form of two integers k and k0 specifying the
number of counts registered by individual detectors, and
Pkk0 ðVÞ denotes the probability of obtaining a specific
combination kk0 for the visibility V.
For the coherent signal scenario considered so far, the

probability of registering, respectively, k and k0 counts has
the product form Pcoh

kk0 ðVÞ ¼ pþ
k ðVÞp−

k0 ðVÞ. Assuming full
photon number resolution with K → ∞, the Chernoff
information can simplified to

Ccoh ¼ ηn̄

�
1 −

1

2
min
0≤α≤1

½ð1þ ReV1Þαð1þ ReV2Þ1−α

þ ð1 − ReV1Þαð1 − ReV2Þ1−α�
�
: ð2Þ

It is seen that the Chernoff information is proportional to
the received optical energy ηn̄. The proportionality factor
given by the ratio Ccoh=ðηn̄Þ can be interpreted as the
amount of information gained from the detection of one
photon. In Fig. 2(a) we depict this factor as a function of the
real parts of visibilities ReV1 and ReV2. Generally, it pays
off to maintain a large distance between the visibilities with
the maximum information attained for V1 ¼ −V2 ¼ �1.
The above picture becomes much more nuanced if the

sending parties have no access to a shared phase reference,
which implies that the signals arrive with a random relative
phase. However, in each individual realization the signals
are described by coherent waveforms whose overlap is
given by V up to an overall phase factor. In such a scenario,
the joint photocount distribution reads

Prnd
kk0 ðVÞ ¼

Z
2π

0

dφ
2π

pþ
k ðeiφVÞp−

k0 ðeiφVÞ: ð3Þ

The explicit analytical expression for Prnd
kk0 ðVÞ is derived in

the Supplemental Material [16]. Obviously, after averaging
over the global phase only the absolute value jVj of the
visibility parameter is relevant. The above probability
distribution can be used to calculate the respective
Chernoff information Crnd according to Eq. (1). As before,
the ratio Crnd=ðηn̄Þ has the interpretation of the amount of
information gained per one received photon.
In Fig. 3 we depict Crnd=ðηn̄Þ as a function of the

received optical energy ηn̄ for an exemplary pair of
visibilities V1 ¼ 0.98 and V2 ¼ 0.56. The linear scaling
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of the ratio Crnd=ðηn̄Þ with ηn̄ for ηn̄ ≪ 1 is explained by
the fact that for very weak signals a detection of at least two
photons in a single realization of the measurement is
necessary to obtain any meaningful information [13].
Consequently, in this regime the leading term of the
Chernoff information Crnd is proportional to ðηn̄Þ2, which
gives unfavorable quadratic scaling with the channel trans-
mission. Beyond the two-photon regime corresponding to
low optical energies, the ratio Crnd=ðηn̄Þ exhibits a well
pronounced maximum in ηn̄. This observation can be used
to draw the following operational conclusion. Suppose that
the total optical energy available at transmitters is n̄tot. If n̄
photons are used in a single realization of the interfero-
metric measurement, one can afford N ¼ n̄tot=n̄ repetitions.
Let us rewrite the Chernoff bound on the error probability
as expð−NCrndÞ=2 ¼ exp½−ηn̄totCrnd=ðηn̄Þ�=2. Assuming a
fixed n̄tot, which can be taken as the overall cost of
implementing the communication primitive, it is beneficial
to optimize Crnd=ðηn̄Þ for a single realization.
Remarkably, the optimum of Crnd=ðηn̄Þ occurs for ηn̄ in

the few-photon range and information needed for

hypothesis testing is distributed in a nontrivial manner
across the entire joint photocount statistics. To illustrate this
point, in Fig. 3 we depict also the noticeably lower ratio
Crnd=ðηn̄Þ calculated for detection that could resolve only
up to K ¼ 2 photocounts over the signal duration. Further,
using only the marginal distribution for the photocount
number difference PΔkðVÞ ¼

P
kPk;kþΔkðVÞ reduces sig-

nificantly the Chernoff information, as also shown in Fig. 3.
The above observations are universal as long as one of the
two visibilities is sufficiently high, which is the case of
quantum protocols motivating this study. In Fig. 2(b) we
plot the maximum Crnd=ðηn̄Þ as a function of the absolute
values of the visibilities jV1j and jV2j to be discriminated
between, along with the optimal average photon number
that should be used in a single realization shown in
Fig. 2(c). Generally, the amount of Chernoff information
per unit optical energy is lower than in the coherent scenario
depicted in Fig. 2(a), which is easily explained by the lack of
the phase reference. Nevertheless, the available information
also scales linearly with the optical energy, which implies
that the scaling advantage over classical protocols should be
analogous to the coherent case.
We performed a proof-of-principle experimental dem-

onstration of binary hypothesis testing for a pair of
visibilities V1 ¼ 0.98 and V2 ¼ 0.56 using a collinear
interferometric setup presented in Fig. 4(a). We employed
a continuous-wave 800 nm laser diode attenuated by a
series of neutral-density filters down to ≈10−14 Wof power
followed by a polarizer ensuring a well-defined linear
polarization. The beam is subsequently sent through
a combination of a quarter-wave and a half-wave plate
whose respective rotation angles θ and ϕ define the
normalized intensities after the Wollaston polarizer as
I� ¼ f1� Re½e4iϕ−2iθ cosð2θÞ�g=2. Hence, our experimen-
tal setup can be viewed as a fully equivalent simulation of a
standard interferometer with the complex visibility tunable
in the entire phase and absolute value range by an
appropriate rotation of the wave plates. To realize the
random phase scenario we collected data for 50 half-wave

(a) (b) (c)

FIG. 2. Discrimination between a pair of hypotheses encoded in interference visibilities V1, V2 for the coherent and the random-phase
scenario. (a) Information gained from a single photodetection event for a fixed phase between interfering signals. (b) Maximum
information per one detected photon Crnd=ðηn̄Þ for signals with a random global phase. (c) Optimal ηn̄� maximizing the ratio Crnd=ðηn̄Þ.
White squares on the diagonal in (b) and (c) represent the case jV1j ¼ jV2j when the two hypotheses are indistinguishable.

FIG. 3. Chernoff information per one detected photon
Crnd=ðηn̄Þ as a function of the average photon number ηn̄ in a
single realization of the visibility measurement with a random
global phase, depicted for the pair of visibilities V1 ¼ 0.98 and
V2 ¼ 0.56. The scenario based on full photocount statistics
K → ∞ (blue line) is compared with limited photon number
resolution K ¼ 2 (green line), and inference based only on the
photocount difference Δk ¼ k0 − k (black line).
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plate angles ϕ uniformly probing a full period of the
visibility phase. Both output beams were monitored by
free-running avalanche photodiodes connected to a time
tagger based on a field-programmable gate array architec-
ture, which registered photocounts with 3.3 ns temporal
resolution.
The time tagged counts for each of the two detectors

were grouped over 80-μs-long time intervals. With the used
input power, this interval corresponds to the mean photo-
count number ηn̄ ¼ 6.3, which gives the partitioning of the
total optical energy that nearly maximizes information per
one detected photon. The numbers of photodetection events
accumulated over an individual interval yield the single
realization outcome kk0. The 50 ns dead time of the
detectors used in the setup did not noticeably distort the
measured photon statistics. We collected approximately
1.5 × 106 pairs kk0 for each of the two visibilities. This

allowed us to determine the joint probability distributions
Prnd
kk0 ðV1;2Þ depicted in Fig. 4(b), which within the resolution

of the graphs match perfectly the theoretical values given
by Eq. (3). A detailed analysis is presented in the
Supplemental Material [16].
In order to experimentally determine the error proba-

bility of binary hypothesis testing one needs to repeat the
test procedure multiple times feeding it with independent
sets of experimental data obtained for a fixed visibility. We
realized this by selecting from the experimental results an
ensemble of M ¼ 1.5 × 104 data sets ½ðkk0Þ1;…; ðkk0ÞN �1,
½ðkk0Þ1;…; ðkk0ÞN �2;…; ½ðkk0Þ1;…; ðkk0ÞN �M consisting of
N photocount pairs. We applied the Neyman-Pearson test
[14] to each data set selecting as the test result the visibility
yielding a higher likelihood of photocount group observa-
tion, i.e., V1 if

Q
N
i¼1 P

rnd
ðkk0ÞiðV1Þ >

Q
N
i¼1 P

rnd
ðkk0ÞiðV2Þ and V2

otherwise. The probability of error was evaluated as the
ratio of erroneous hypothesis determinations to the number
of groups M used for testing. That way we estimated the
conditional error εðV1jV2Þ of inferring visibility V1 when
V2 was the true one and the reverse error εðV2jV1Þ.
In Fig. 4(c) we compare the average error probability

determined from experimental data ε ¼ ½εðV1jV2Þ þ
εðV2jV1Þ�=2 with both the standard Chernoff bound for
the random phase scenario and the refined Chernoff bound
[15] derived explicitly in the Supplemental Material [16].
In accordance with theoretical predictions, the experimental
error remains below the upper bound provided by the
Chernoff bound [14], reaching its refined version for an
asymptotically large number N of outcomes used for
hypothesis testing [15]. For the fingerprinting protocol,
the case of unequal inputs would hold the laxer promise of
the visibility V2 ≤ 0.56. The shadowed gray region in
Fig. 4(c) indicates the range of error values obtained from
Monte Carlo simulated photon count statistics with V1 ¼
0.98 and 0 ≤ V2 ≤ 0.56, and processed using the Neyman-
Pearson test designed for V2 ¼ 0.56. It is seen that the
decision rule works also in this more general scenario.
Let us close by discussing the parameter regime required

to demonstrate quantum advantage for the fingerprinting
protocol based on the primitive presented here. For input
data sets n bits long, in the classical scenario it is necessary
to reveal at least Oð ffiffiffi

n
p Þ bits of information [17]. As shown

in the Supplemental Material [16], in the absence of an
external phase reference the strategy presented here makes
it possible to maintain the exponential enhancement in the
number of revealed bits scaling as Oðlog2 nÞ, analogously
to the coherent protocol [5]. For the error probability ε ¼
10−4 our protocol beats the best currently known classical
protocol [18] for n ≥ 2.3 × 105 and the ultimate classical
limit [10] for n ≥ 6.3 × 108 bits. It is assumed here that for
identical inputs the deviation of the visibility V1 ¼ 0.98
from 1 stems from experimental imperfections, while
unequal inputs are guaranteed to produce maximum

(a)

(b)

(c)

FIG. 4. (a) The simplified scheme of the experimental setup.
NDF, neutral density filters. POL, polarizer. HWP, half-wave plate.
QWP, quarter-wave plate. APD, avalanche photodiode. FPGA,
time tagger based on field-programmable gate array. (b) Exper-
imental joint photocount distributions Prnd

kk0 obtained from approx-
imately 1.5 × 106 outcomes kk0 for visibilities V1 ¼ 0.98 (left),
V2 ¼ 0.56 (right). (c) The error probability ε in hypothesis testing
as a function of the data set size N, determined for each N from
1.5 × 104 repetitions of the Neyman-Pearson test on independent
sets of experimental data. The results are compared with the
standard Chernoff bound (green, solid line) and its refined version
(gray, dashed line). The error bars account for 1 standard deviation.
The gray shaded region corresponds to the error probability of
testing hypotheses V1 ¼ 0.98 vs V2 from the range 0 ≤ V2 ≤ 0.56
using the Neyman-Pearson test designed for V2 ¼ 0.56.
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visibility V1 ¼ 0.56 with the same contribution from
imperfections. In this scenario the attainable code rate
for mapping input data sets onto binary phase patterns is
R ¼ 0.12, which implies that the quantum advantage can
be observed for pattern lengths exceeding 1.9 × 106 and
5.2 × 109 to beat the best known classical protocol and the
classical limit, respectively. If the optical signals are
modulated with the 100 GHz bandwidth achievable with
standard LiNbO3 electro-optic modulator technology [19],
one would require laser sources correspondingly with a
kilohertz or a few-hertz linewidth to ensure phase stability
over the signal duration. While the former requirement can
be met by commercial single-frequency lasers, in the latter
case more sophisticated, yet available, laser systems would
be needed [20,21].
In conclusion, we described and verified experimentally

a strategy to identify the modal overlap between two optical
signals with a random relative phase using higher-order
interference. It can be viewed as an implementation
primitive for a number of quantum-enhanced protocols,
when a shared phase reference is not available. As
illustrated by the quantum fingerprinting example, this
approach offers an analogous scaling advantage compared
to classical protocols as schemes utilizing first-order
coherence. The experimental demonstration of the quantum
advantage should be within the reach of current technology.
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