
 

In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals

Hythem Sidky,1 Juan J. de Pablo,2,3 and Jonathan K. Whitmer1,*
1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA

2Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
3Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA

(Received 30 November 2017; published 9 March 2018)

Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established
bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from
molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to
measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the
surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp
of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including
the saddle-splay elastic constant k24, may be calculated directly from atomistic molecular simulations.
Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate
unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.
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Though liquid crystals (LCs) [1] have long been central
components of display technologies [2], their optically
responsive and highly controllable nature has lead to a
host of emerging applications in nanoscale and colloidal
templating [3], organic electronics [4], biosensing [5,6],
compact lenses [7], and switchable diffraction gratings [8].
These applications rely on their ordering elasticity, which
through competition with applied fields and surface inter-
actions can lead to topological defects whose nature and
structure is governed by a precise interplay [9–11]. The
balance between these different contributions to the free
energy is apparent in the morphologies adopted by con-
fined liquid crystals [12–14], where it is possible to
manipulate different variables to develop exquisitely sen-
sitive systems for sensing applications [6,15]; a properly
chosen liquid crystal can in fact be balanced on a knife’s
edge, ready for a vanishingly small concentration of analyte
to induce a mesoscopic transformation, visible under
standard crossed-polarizer optics. Precision engineering
of such new devices requires an in-depth understanding
of the elastic behavior of the underlying liquid crystalline
phases.
The resistance of a nematic phase to orientational

deformations can be described through a set of quad-
ratic-order terms and the corresponding response coeffi-
cients [1]. Though this energy is relatively simple to phrase,
elastic properties are difficult to measure experimentally.
The saddle-splay constant k24, in particular, which penal-
izes bidirectional deformations [16], is only accessible
through indirect measurements that rely on morphological
instability thresholds [9,10,17–19]. Past experimental stud-
ies have reported conflicting measurements, and some of
the published values of k24 have in fact been found to lie

outside stability criteria established by Ericksen [20],
hinting at new physics that may be used to purposely
engineer instability into nematic materials. Here, we
demonstrate that it is possible to rely on detailed molecular
simulations to predict the elastic moduli of nematic liquid
crystals. By extending methods that rely on real-space free-
energy perturbations [21,22] to utilize an accurate atomistic
force field [23], we are able to characterize the elastic
coefficients and their temperature dependence, including
the elusive k24. Our results lead to values consistent with
Ericksen’s bounds and in agreement with a subset of the
experimental literature, implying that previously observed
morphological instabilities in confined 5CB [18,24] could
have been due to inappropriate Ansätze, surface effects, or
higher-order elastic moduli.
For the common case of apolar, achiral, and uniaxial

nematic liquid crystals, the phase may be described by a
local orientation vector n̂. In the absence of boundaries and
external fields, this is a global vector. The local order,
however, can be perturbed, leading to small distortions that
incur a free energy penalty and a corresponding elastic
restoring force. To order ð∇n̂Þ2, the elastic free energy can
be written as [1]

f ¼ 1

2
k11ð∇ · n̂Þ2 þ 1

2
k22ðn̂ · ∇ × n̂Þ2 þ 1

2
k33ðn̂ × ∇ × n̂Þ2

þ 1

2
ðk22 þ k24Þ½Trð∇n̂Þ2 − ð∇ · n̂Þ2� ð1Þ

This expression contains the three most commonly used
terms and their corresponding coefficients, or elastic
moduli: splay (k11), twist (k22), and bend (k33). The
additional, divergencelike term (∝ k22 þ k24) is referred
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to as “saddle splay.” It penalizes bidirectional deformations,
and can be defined so that the free energy is positive
definite to quadratic order as outlined by Ericksen [20]. An
illustration of these elastic modes is presented in Fig. 1.
While originating from bulk interactions [16], the saddle
splay may be transformed into a surfacelike term in a global
free energy integral by invoking Gauss’s law. For that
reason, it has generally been overlooked in elastic studies
[1,25], and it is only recently that studies of confined
nematic LCs have unearthed its relevance. It likely con-
tributes far more than initially believed, to the point where
under some conditions it is suggested to lie outside the
Ericksen bounds [19,24], a feature that hints at an incom-
plete understanding of elasticity within the framework of a
Frank-Oseen description. One implication of this is a
spontaneous twisting of toroidal [18] or cylindrical [21]
geometries, as depicted in Figs. 1(d) and 1(e). It should be
noted that for k24, all published measurements have been
indirect, and have relied either on elastic instability thresh-
olds in various geometries or a fit to a continuummodel that
matches polarized microscope measurements [9,10,17–19].
This has lead to disagreements in the values of k24 reported
in the literature.
The goal of this work is to present a direct method for

calculation of the elastic moduli of nematic materials from
molecular simulations of atomistically detailed models,
so that predictions can be quantitatively compared to

experimental measurements. In such systems, the average
orientation n̂ and degree of nematic alignment S are known
and, as shown in this work, one can apply nanoscopic
deformations to the material in order to excite distinct
modes with extraordinary precision, thereby leading to
direct, unambiguous characterization of all elastic moduli,
including k24 (see Supplemental Material [26]). We hasten
to note that past efforts to determine elastic coefficients of
liquid crystals have focused on coarse-grained models
[31,32]. Certain features underlying liquid crystalline
ordering [33–35], however, are inaccessible without
molecular specificity. Thus, a set of experimentally tuned
atomistic force fields have been developed for, in particular,
the widely studied cyanobiphenyls [23], as well as more
general systems [36]. With such force fields, it has been
possible to describe liquid crystal ordering with an
extraordinary degree of precision, as revealed by com-
parison to x-ray reflectivity [34,35] and NMR data [37],
and by studies of the molecular structure within nematic
disclinations [33].
Building on the pioneering work of Cleaver and Allen

[38], several methods have been proposed to calculate the
elastic constants of coarse-grained LC systems from
molecular simulations. As useful as they have been, past
methods have been hampered by limited accuracy, numeri-
cal complexity, or significant finite-size effects [38–40].
These limitations have prevented applications to atomistic
systems without invoking theoretical assumptions that
limit the reliability of the calculations. Indeed, in one of
the few studies that considered a bulk model of 5CB, elastic
constants were obtained using three different approaches,
leading to significantly different elastic coefficients [41].
Though one set of predictions was found to be in good
agreement with experimental measurements, it was
regarded as “fortuitous” by the authors due to the crudeness
of the underlying assumptions [41]. Another notable effort
utilized a hybrid molecular field theory [42] to account for
molecular flexibility from structures predicted by density
functional theory (DFT) and geometry optimizations. Good
agreement with experiment was reported for the kii elastic
constants of several 4-n-alkyl-4’-cyanobiphenyls (nCBs)
and para-azoxyanisole. Unfortunately, that method cannot
capture all molecular conformations and, in particular, the
mutual arrangements that nearby molecules adopt in
response to bidirectional deformations, which are essential
to capturing k24.
Recently, we proposed a new method [21] in which

orientational perturbations and free energy sampling tech-
niques are coupled to obtain elastic constants by exciting
distinct modes within the Frank free energy formulation
[Eq. (1)]. The proposed method was shown to exhibit
minimal sensitivity to finite-size effects [21,22], and was
successfully applied to a broad range of Gay-Berne
ellipsoids [22] and Lebwohl-Lasher lattice models
[43,44]. In this work, we demonstrate the ability to directly

FIG. 1. The top row shows idealized bulk elastic modes
(a) splay, (b) twist, and (c) bend, which can be directly probed
in the experiment. The bottom row shows the 5CB molecule (d)
and cylindrical twist deformations, which rely on the saddle-splay
elastic constant k24, in stable (e) and unstable (f) configurations
under conditions of degenerate planar anchoring representative of
the commonly studied 5CB-water interface. Saddle splay is not
directly measurable through experiment but can be inferred
indirectly. The positive definiteness of the elastic free energy
expressed through the Ericksen bound k22 − k24 ≥ 0 is thought to
be violated for 5CB, though experiments are not conclusive.
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predict in silico the elastic constants of an atomistic model
of 5CB. This molecule is among the most widely studied
and well characterized LCs. Despite its individual asym-
metry, 5CB behaves largely as a uniaxial nematic. For the
following investigations, we employ the force field of
Tiberio and co-workers [23,26], which has been validated
against experimental data in a variety of situations
[33–35,37]. From our elastic measurements, we aim to
gain additional insight into the relationship between
molecular geometry and elasticity. More generally, we
outline a computational methodology that in the future
may be used for reliable screening of the elasticity of liquid
crystalline materials for specific applications.
We recount the general approach here; the reader is

referred to the Methods section and Ref. [21] for further
algorithmic details. The free energy perturbation approach
requires an order parameter ξ to select for deformations that
excite a particular elastic mode. We take ξ to be ∂nx/∂x for
splay, ∂ny/∂x for twist, and ∂nx/∂z for bend in a system that
is constrained to orient along the ẑ axis at the periodic
boundary. The director at the center of the box is then tilted
using a bias applied to the chosen order parameter to
produce chevronlike patterns, resulting in a uniform-
magnitude gradient between the restriction and bias
regions. Figures 2(a)–2(c) illustrate this approach in prac-
tice. A stiff harmonic potential is used to maintain align-
ment to the ẑ direction at the periodic boundaries of the
box. A second region in the box center is actively biased
along a chosen deformation ξ using an adaptive sampling
method. Here, we choose basis function sampling [43],
which is constructed in a way such that material properties
are easily extracted from the converged parabolic simu-
lation bias. A similar approach is adopted for k24 by
imposing a cylindrical geometry with degenerate planar
anchoring and selecting ξ as ∂nθ/∂r [21].
The elastic constants are measured by implementing the

order parameter in the advanced sampling software suite,
SSAGES [47]. Basis function sampling [43] is used with
N ¼ 14 Legendre polynomials to measure the free energy
of director deformation over the interval ½−0.5; 0.5�. Using
the final decorrelated trajectories from the previous sim-
ulations, four walkers contribute to the overall free energy
estimate. Simulations are carried out at NVT conditions for
1 μs, at which point the polynomial coefficients converge
to withinOð10−6Þ. The elastic constants are computed from
the final free energy surface as previously described.
We begin our studies by examining the standard bend,

twist, and splay elastic constants of 5CB, for which
multiple measurements exist in the literature. We choose,
for comparison, the results of Madhusudana and Pratibha
[45] and Chen and co-workers [46], which represent the
span of available experimental elastic measurements for
5CB. After locating the nematic-isotropic transition tem-
perature TNI, we proceed to measure elastic coefficients at a
range of temperatures down to 15 °C below TNI. The 5CB

model in question has been parametrized to accurately
represent the thermodynamics of the nematic-isotropic
transition, including appropriate densities and orientational
order. Strikingly, though elastic behavior is not included in
this parametrization, the measured coefficients we obtain
[see Fig. 2(d)] lie directly on top of the experimental data
range, intercalating the high and low estimates, when
plotted as a function of T − TNI. It should be noted that
the actual transition temperature predicted by this model is
slightly higher (by two degrees) than the experimental
value.
Having established the validity of the proposed method,

we proceed to apply the free energy perturbation technique
to obtain k24. It is convenient to work in a cylindrical
geometry to isolate the normal twist mode [16], which is
directly analogous to double-twist arrangements observed

FIG. 2. (a) A harmonic restraint is applied to the periodic edges
of a simulation box in order to align the molecules in the ẑ
direction. (b) Molecule orientations in the central region of the
simulation box are biased using basis function sampling [43]
according to the appropriate order parameter to excite the desired
elastic mode. Shown here are arrows representing splay defor-
mations from the nonperturbed state. (c) Over the course of a
simulation, molecules enter and exit the respective regions. Only
those molecules which lie within the regions shown in purple
(edges) and orange (center) are biased. A gradient is produced
across the box dimension as a result of the sampling and the
corresponding free energy is calculated. The resulting bulk elastic
coefficients (kii) for 5CB (d) are compared to experimental data
from Madhusudana and Pratibha [45] (squares) and Chen and co-
workers [46] (triangles). Connected circles represent elastic
constant calculations using the methodology outlined in this
work. Uncertainties are calculated using 1500 bootstrap cycles on
the collected decorrelated samples.
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in blue phases and toroidal geometries. Here, a larger
system is required to achieve a stable cylinder with
sufficient diameter to probe the normal twist mode. To
ensure that only this mode is probed, one must remove the
effects of surface interactions from the free energy profile.
It is sufficient to choose a system that has degenerate planar
anchoring, so that any preferred surface orientations are
imposed only by the bulk nematic order. It is well known,
and has been validated in simulations [34], that aqueous
interfaces impose exactly this type of anchoring. Hence, we
embed a periodic cylinder of liquid crystal within a solvent
of extended simple point charge (SPC/E) water [48].
A typical configuration of this cylindrical geometry is
given in Fig. 3(a). The presence of an interface, while not
affecting orientation, nevertheless imposes order on the
5CB cylinder, effectively shifting TNI by ≈5 K [see
Fig 3(b)] while retaining similar ordering behavior
[plotted as SðTÞ in Fig. 3(b)] as a function of relative

temperature. Hence, to relate these measurements to bulk
elastic constants, we compare values at equivalent T − TNI.
The measured k24 elastic constants are shown in Fig. 3(c)

[26]. It is apparent that the Ericksen bound k22 − k24 ≥ 0
remains valid across the nematic range. This is a striking
result, as indirect measurements in toroidal droplets [18],
escaped radial morphologies [10], and aperiodic nematic
films [17] yield a value for k24 for which the normal modes
of deformation [16] are either nearly zero or in violation of
the Ericksen bound. From our calculations, saddle splay
retains a finite value throughout the nematic range that is,
surprisingly, essentially constant. While this appears to be
at odds with the behavior of most elastic coefficients near
the nematic-isotropic transition, it is important to note that
k24 never appears by itself within expressions for bidirec-
tional modes [16], and that the cost of the bidirectional
twist does trend toward zero, as one expects, when disorder
is approached. Importantly, the approach of k22 − k24 to
zero may help explain some experimental observations,
which are typically conducted at temperatures near TNI.
Our measurements also contradict the predictions made for
5CB using a hybrid molecular field theory (MFT) [42],
which suggested that k24 varies significantly over the
nematic range, and even predicted the value to switch sign
at a crossover temperature of T − TNI ≈ −7. Since that
theory predicts k22 commensurate with experiments, this
indicates nonvanishing normal twist as the transition
temperature is approached. The differences in the present
work and MFT predictions could be due to the underlying
assumptions of MFT, which does not capture spatial
dependencies and mutual deformations that play an impor-
tant role in k24. The k24 calculations reported here are
significant in that saddle-splay contributions to the free
energy play a critical role in stabilizing defects [11] and
affect morphological transitions [12]. That we observe no
lack of positive definiteness in our measurement suggests
that the origin of spontaneous radial [24] and double-twist
[18] morphologies observed in experiments on 5CB must
be revisited.
We emphasize again that, to our knowledge, published

experimental measurements of k24 are indirect, and utilize
an Ansatz to extract a result. In contrast, we directly
simulate 5CB using a molecular model that has been
parametrized to match experimental densities and orienta-
tional order, and report bulk (kii) elastic constants that are
in full agreement with experiment. Hence, we were able to
use the predictive power of molecular simulations to obtain
a quantity that has proved elusive experimentally. As this
prediction contradicts mechanisms hypothesized in experi-
ment, it is important that we rigorously support the results
of our simulations. To rule out the possibility that pretransi-
tional ordering induced by anchoring or spatial inhomo-
geneity result in misleading measurements, we also plot the
radial profiles of the nematic director within each cylinder
at all studied temperatures in Fig. S1 in the Supplemental

FIG. 3. Snapshot of 5CB cylindrical system (a) with solvent
removed. Because of finite anchoring-induced ordering within
the cylinder, the transition temperature TNI is shifted slightly
(b) by ≈5 K. The calculated saddle-splay surfacelike elastic
constant (k24) for 5CB (c) shows no violation of the Ericksen
bound, delineated by k22 − k24 ≥ 0. To validate k24 stability, we
test the unbiased director probability distribution pðnθÞ against
the normal distribution (d) using a Kolmogorov-Smirnov test
(representative data at 296 K shown; distributions obtained at
other temperatures are plotted in Fig. S2 of the Supplemental
Material [26]). Uncertainties in the elastic measurements are
estimated using 1500 bootstrap cycles on the collected decorre-
lated samples, yielding error bars comparable to the size of the
points. Roughness in trendlines is not due to a statistical
uncertainty of each measurement, but instead due to the under-
lying fluctuations in nematic order and volume that arise under
NPT preparation.
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Material [26] and show that they are linear. We also
generate unbiased distributions of the director fluctuations
in the outer annulus of each cylinder and perform a one-
sample Kolmogorov-Smirnov test at a 1% significance
level against a centered normal distribution. A representa-
tive data set at T ¼ 296 K is shown in Fig. 3(d). All
samples reject the null hypothesis, which indicates that
there is no statistically detectable metastability at nonzero
deflection. We include all director time profiles, resulting
distributions, and parabolic free energy profiles with P2

projections in the Supplemental Material [26].
One might also object to our k24 measurements on the

basis of finite-size effects. The free energy perturbation
approach adopted here has been shown [21,22] to be
insensitive to finite-size effects, particularly in bulk mea-
surements [22]. This is supported by the striking agreement
of our kii measurements with experiment. However, k24 is
measured in cylindrical confinement, which may exhibit
different scaling behavior. While an explicit study of finite-
size effects on k24 is currently intractable due to immense
computational costs, we propose that it is not relevant for
the broader observation that Ericksen’s equalities are
satisfied. Finite-size scaling may change the absolute
magnitude of the reported values, but will not change
the stable morphology—the cylinder either is or is not
unstable to twisting. Unlike prior coarse-grained studies,
which found no appreciable free energy penalty to twisting
[21], and experiments and theory demonstrating twisting
in toroidal geometries is similarly not penalized [18,49],
these results demonstrate that k24-containing modes have a
positive-definite free energy for 5CB.
Our methods and calculations serve to shed light into

some long-standing concerns about the experimental value
of k24 and its role in driving morphology transitions in
confined systems [10,14,17,18,24]. However, in doing so,
we have opened up new questions about the true reason for
such striking morphologies. If k24 is not responsible, then
what is? Perhaps there are important third- or fourth-order
terms that arise to stabilize spontaneous deformations.
Perhaps anchoring and explicit solution chemistry play a
larger role than previously appreciated. Regardless, our
calculations represent a useful milestone in material prop-
erty prediction. We demonstrate that it is possible to predict
bulk elastic constants in agreement with experiment for a
molecular system from simulation, and we provide the only
direct measurements of saddle splay k24 for the otherwise
extensively characterized 5CB. With these new develop-
ments, the tools are in place to begin unraveling the role of
higher order elastic coefficients and subtle anchoring
behaviors across the landscape of liquid-crystalline materi-
als. A key challenge will be the calculation of the Lij elastic
coefficients utilized in the Landau–de Gennes Q-tensor
formalism, which are not directly accessible to experiment,
and are not directly mappable onto the Frank elastic theory
[50]. In each of these arenas, the methodology and

framework employed here provide a foundation for com-
puter-aided characterization and design of novel mesogenic
compounds.
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