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We address the question about the origin of the 1
2
ðe2/hÞ conductance plateau observed in a recent

experiment on an integer quantum Hall (IQH) film covered by a superconducting (SC) film. Since one-
dimensional (1D) chiral Majorana fermions on the edge of the above device can give rise to the half
quantized plateau, such a plateau is regarded as conclusive evidence for the chiral Majorana fermions.
However, in this Letter we give another mechanism for the 1

2
ðe2/hÞ conductance plateau. We find the

1
2
ðe2/hÞ conductance plateau to be a general feature of a good electric contact between the IQH film and the

SC film, and cannot distinguish the existence or the nonexistence of 1D chiral Majorana fermions. We also
find that the contact conductance between a superconductor and an IQH edge channel has a non-Ohmic
form σSC-Hall ∝ V2 in the kBT ≪ eV limit, if the SC and IQH bulks are fully gapped.

DOI: 10.1103/PhysRevLett.120.107002

One promising direction in building a quantum computer
is topological quantum computation [1], which can be
realized using non-Abelian topological orders that contain
Ising non-Abelian anyons, or other more general non-
Abelian anyons [2,3]. Although Ising non-Abelian anyons
cannot perform universal topological quantum computation
[4], they can be realized by noninteracting fermion systems,
such as the vortex in a pþ ip 2D superconductor [5–7].
In 1993 [8], it was predicted that some non-Abelian

fractional quantum Hall states [2,3] can have 1D chiral
Majorana fermions on the edge. (1D chiral Majorana
fermions are fermions with only fermion-number-parity
conservation [9,10] that propagate only in one direction in
1D space.) In fact, the appearance of an odd number of 1D
chiral Majorana fermion modes on the edge implies the
appearance of non-Abelian defects in the bulk [8,11]. The
non-Abelian states may have already been realized in
experiments [12–14]. In particular, the recently observed
half quantized thermal Hall conductance [15] from the
quantum Hall edge states [8,16,17] provides conclusive
evidence of 1D chiral Majorana fermions and its “parent”
non-Abelian fractional quantum Hall states. In 2000 [5],
1D chiral Majorana fermions were predicted to exist on the
edge of a pþ ip 2D superconductor. More recently, 1D
chiral Majorana fermions were predicted to exist on the
interface of a ferromagnet and superconductor on the
surface of a topological insulator [7], and on the edge of
an integer quantum Hall (IQH) film covered by a super-
conducting (SC) film [18,19].
In Refs. [18,19], it was shown that 1D chiral Majorana

fermions can give rise to a 1
2
ðe2/hÞ conductance plateau for

a two terminal conductance σ12 across a Hall bar covered
by a superconductor. Recently, Ref. [20] observed such a
conductance plateau, which was regarded as a “distinct

signature” of 1D chiral Majorana fermions. This leads
to the claimed discovery of 1D chiral Majorana fermions.
The discovered Majorana fermions were named “angel
particles,” and have attracted a lot of attention.
However, observing a 1

2
ðe2/hÞ conductance plateau may

not imply the existence of 1D chiral Majorana fermions.
For example, in Fig. 4(a) of the very same paper [20], a
1
2
ðe2/hÞ conductance was observed in a stacked IQH film

and a metal film without the Majorana fermions. Similarly,
Refs. [20,21] pointed out that 1

2
ðe2/hÞ conductance can

appear when the Hall bar under the SC film is in a metallic
state without the Majorana fermions.
Such an explanation was discarded in Refs. [20,21]

since it was thought to be inconsistent with the observed
magnetic field B dependence of σ12 [Fig. 2(c) and Fig. 4(a)
in Ref. [20]]. In the experiment, σ12ðBÞ is found to be
1
2
ðe2/hÞ when the magnetic field B is high and thereby the

topped film is in the normal metallic state. Then, it
increases up to e2/h, as B is reduced and the topped film
becomes SC. As B is reduced further, σ12 drops to a 1

2
ðe2/hÞ

plateau near Bc, and then to near 0.
Result.—In this Letter, we study the Majorana-fermionless

mechanism for the 1
2
ðe2/hÞ conductance plateau in detail.

We find that it can explain the whole observed magnetic field
B dependence of σ12 very well. The 1

2
ðe2/hÞ conductance

plateau can be a general feature of a good electric contact
between the IQH and the SC films, regardless of whether the
1D chiral Majorana fermions exist or not.
A general understanding for two terminal conductance

σ12.—In the experiment [20], the SC layer is directly
deposited on the Hall bar. Naively, one would expect the
contact resistance 1/σSC-Hall between the superconductor
and the edge channels of the Hall bar under the super-
conductor to be much less than h/e2 ¼ 25812 Ω. In this
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case, the two terminal conductance σ12 ¼ 1
2
ðe2/hÞ. To see

this, we assume the superconductor to have a vanishing
chemical potential μSC ¼ 0 and that there is no net current
flowing in or out of the superconductor. So the chemical
potentials on the two incoming edge channels of the Hall
bar should be opposite: μ0 and −μ0. The chemical poten-
tials on the two outgoing edge channels of the Hall bar are
also opposite: μ and −μ (see Fig. 1).
When the contact resistance 1/σSC-Hall is low, the

chemical potentials on the two outgoing edge channels
vanish: μ ¼ μSC ¼ 0, and the two terminal conductance σ12
is given by σ12 ¼ ½μ0 − ð−μÞ�/½μ0 − ð−μ0Þ� ¼ 1

2. (In this
Letter, all conductances are measured in units of e2/h.) We
see that the 1

2
quantized conductance of σ12 is a very general

feature of good contact between the superconductor and the
Hall bar under the superconductor, and one might expect
the two terminal conductance σ12 to be always 1

2
. However,

in the experiment, σ12 ≈ 1 is observed for a certain range of
the magnetic field. This suggests the other limit that the
superconductor and the Hall bar decouple electronically, as
then σ12 should be 1, contributed purely from the IQH bar.
Indeed, that the contact resistance between the super-
conductor and the Hall bar can be much larger than h/e2

is observed directly at corresponding fields via the meas-
urement of σ13 shown in Fig. 4(c) in Ref. [20].
The observed σ12 ¼ 1

2
at a high field, where the topped

film is metallic, indicates the contact resistance between the
metal film and the Hall bar is always much less than h/e2.
But in the low field region where the film above the IQH
layer becomes SC, the measured σ12 varies from 1 to 1

2

depending on B, indicating that the contact resistance
1/σSC-Hall between the SC film and the Hall bar can become
much bigger than h/e2, as well as much smaller. In this
Letter, we explain such a striking pattern of the contact
conductance σSC-Hall via a percolation model.
As the magnetic field B is reduced through the critical

value Bc, the Hall bar under the superconductor changes
from a Chern number NChern ¼ 1 IQH state to a Chern
number NChern ¼ 0 insulating state. We use a percolation
model to describe such a transition. In the percolation
model, when B is reduced through Bc, the chiral edge
channels of the IQH state become more and more wiggled.

Correspondingly, the Hall bar under the superconductor has
three phases: the NChern ¼ 1 phase in Fig. 1(a) and the
NChern ¼ 0 phase in Fig. 1(c), where the IQH edge channel
can be straight and short if B is far away from Bc. Thus, the
contact resistance 1/σSC-Hall is high. The third phase is a
metallic phase in Fig. 1(b), where the IQH edge channel fills
the sample and its trajectory length Ledge is long. As a result,
the contact resistance 1/σSC-Hall is low.
A microscopic calculation of the contact conductance

σSC-Hall between the superconductor and an IQH edge
channel.—We first assume the SC film and IQH bulk are
clean enough that they are both fully gapped. Thus, only
Andreev scattering along the edge contributes to σSC-Hall.
To include the effects of charge conserving inelastic
scattering, we first divide the IQH edge channel into many
segments each of length lϕ—the dephasing length. Each
segment is coupled to a superconductor [see Fig. 2(a)],
which induces the coherent Andreev scattering: free elec-
trons up to a chemical potential μ can be coherently
scattered and come out as holes. The incoming edge state
is an equilibrium state with an incoming chemical potential
μ, while the outgoing edge state out of one SC segment is
not an equilibrium state. Charge conserving inelastic
scattering equilibrates the outgoing edge state, which
now has a chemical potential μ0. From μ − μ0, we can
determine σSC-Hall for the segment.
To analyze the change in μ after passing a single SC

segment, let us start with the equation of motion for a free
chiral fermion:

iℏ ̇c ¼ vfð−i∂x − kFÞcþ
iℏ
2
½vsc∂xc† þ ∂xðvscc†Þ�; ð1Þ

where vf is the velocity of the chiral fermion, kF is the
Fermi momentum at μ ¼ EF ¼ 0, and vscðxÞ is the SC
coupling coefficient, which depends on x (vsc ¼ 0 for an
edge not under the superconductor). We treat ðc; c†Þ ¼
ðψ1;ψ2Þ≡ ψT as independent fields. For a mode with
frequency ω, the equation of motion becomes

ωψ ¼
�

vfð−i∂x − kFÞ i
2
ðvsc∂x þ ∂xvscÞ

i
2
ðv�sc∂x þ ∂xv�scÞ vfð−i∂x þ kFÞ

�
ψ ð2Þ

μSC =0μSC =0

l edge

Ledge

μμ 0
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−μ0
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μ

FIG. 1. A Hall bar covered by a SC film. The Hall bar under the
superconductor can be in (a) a Chern number NChern ¼ 1 IQH
phase (B > Bc), (b) a metallic phase, and (c) a Chern number
NChern ¼ 0 insulating phase (B < Bc), depending on the corre-
lation length ξ of the percolation model.
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FIG. 2. (a) A segment of an IQH edge under a superconductor.
(b) L>

edge and L<
edge as a function of B.
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or (up to linear vsc order)

− vf

 
1 vsc

2vf

v�sc
2vf

1

!−1

i∂x

 
1 vsc

2vf

v�sc
2vf

1

!−1

ψ

≈
�
ωþ vfkF 0

0 ω − vfkF

�
ψ : ð3Þ

Let ψ̃ ¼
�

1
v�sc/ð2vfÞ

vsc/ð2vfÞ
1

�−1
ψ ; we can rewrite the

above as

−i∂xψ̃ðxÞ ¼ MðxÞψ̃ðxÞ; ð4Þ

MðxÞ ¼
 

1 vsc
2vf

v�sc
2vf

1

! ω
vf
þ kF 0

0 ω
vf
− kF

! 
1 vsc

2vf

v�sc
2vf

1

!

≈
ω

vf

 
1

vscðxÞ
vf

v�scðxÞ
vf

1

!
þ
�
kF 0

0 −kF

�
:

Solving the above differential equation, we find ψ̃ðxÞ ¼
P½ei

R
x

0
dx0 Mðx0Þ�ψ̃ð0Þ, where P is the path ordering. Now we

assume that vscðxÞ ¼ 0 for x < 0 and x > lϕ, and vscðxÞ is a
constant for x ∈ ½0; lϕ�. We find ψðlϕÞ ¼ Sψð0Þ, where the
unitary matrix S is given by

S ¼ P½ei
R lϕ
0

dxMðxÞ� ¼ eiϕ
�
eikFlϕ cos θ ieiφ sin θ

ie−iφ sin θ e−ikFlϕ cos θ

�

and, to the linear order in vsc, the scattering angle is

θ ≈
jvscjω
kFv2f

sinðkFlϕÞ: ð5Þ

The modes with frequency ω are electronlike states
with momentum kþ kF and holelike states with momen-
tum −kþ kF, where k ¼ ω/vf. Denote ak, bk as the
incoming and outgoing electron annihilation operator of
momentum k measured from kF. bk is determined by
bk ¼ S11ak þ S12a

†
−k.

In the zero temperature limit, the occupation numbers
of incoming and outgoing electrons are ha†kaki ¼ 1 for
k ≤ μ/ℏvf, ha†kaki ¼ 0 for k > μ/ℏvf, and

hb†kbki ¼ cos2θha†kaki þ sin2θð1 − ha†−ka−kiÞ

¼

8>><
>>:

0; k > μ
ℏvf

;

cos2(θðkÞ); − μ
ℏvf

≤ k ≤ μ
ℏvf

;

1; k < − μ
ℏvf

:

ð6Þ

The outgoing electrons relax to μ0 with the same density

Z
μ/ℏvf

−μ/ℏvf

dk
2π

cos2
�jvscj sinðkFlϕÞ

vfkF
k

�
¼
Z

μ0/ℏvf

−μ/ℏvf

dk
2π

ð7Þ

⇒ μ0 ¼ ℏv2fkF
2jvscj sinðkFlϕÞ

sin
2jvscj sinðkFlϕÞμ

ℏv2fkF
: ð8Þ

When ðjvscjμÞ/ðℏv2fkFÞ ≪ 1, we have

μ0 ¼ μ

�
1 −

1

6

�
2jvscj sinðkFlϕÞμ

ℏv2fkF

�
2
�
:

This change of μ through one segment of length lϕ allows
us to obtain, for a length δLedge edge,

σSC-Hall ¼ −
δμ

μ
¼
�
μ

Δ

�
2 δLedge

lϕ
ð9Þ

with 1/Δ ¼
ffiffi
1
3

q
jvscj/ðℏv2fkFÞ, where we have replaced

sin2ðkFlϕÞ by its average 1
2
. Interestingly, σSC-Hall is propor-

tional to μ2, or rather, non-Ohmic.
In the high temperature limit,

ha†kaki ¼ gðμ; kÞ≡ 1

eðℏvfk−μ/kBTÞ þ 1
;

hb†kbki ¼ cos2θgðμ; kÞ þ sin2θ(1 − gðμ;−kÞ)
¼ cos2θgðμ; kÞ þ sin2θgð−μ; kÞ: ð10Þ

Keeping to the first order of μ/kBT and vsc/vf, we reach

μ0 ¼ μ

�
1 −

2π2

3

�jvscj sinðkFlϕÞ
vfkF

kBT
ℏvf

�
2
�
: ð11Þ

From this we obtain, for a length δLedge edge,

σSC-Hall ¼ γ
δLedge

lϕ
ð12Þ

with γ ¼ ðπ2/3Þ½jvscjkBT/ðℏv2fkFÞ�2. In this case, σSC-Hall is
independent of μ and is Ohmic.
If either the SC film or IQH bulk is not clean enough

and has gapless electronic states that couple to the chiral
edge channel, we can take into account those gapless
states by assuming the superconductor to be a gapless
superconductor. In this case, σSC−Hall will in addition
receive a contribution from the electron tunneling into the
quasiparticle states in the gapless superconductor. We
expect such a contribution to be Ohmic and σSC-Hall can
be modeled by Eq. (12) over the entire temperature
range.
In the following, we will separately calculate σ12ðBÞ,

using the non-Ohmic (9) or Ohmic (12) σSC-Hall.
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Non-Ohmic case.—From Eq. (9), we see that the
contact resistance can be much bigger than h/e2, as long
as μ2δLedge is small enough. The current δI ¼ σSC-Hall μ
flowing from the edge to the superconductor will cause a
drop in the chemical potential μ along the edge:

dμðxÞ ¼ −σSC-Hall μ ¼ −
μ3ðxÞ
lϕΔ2

dx: ð13Þ

Solving the above equation, we find μ ¼ μðLedgeÞ ¼
μ0/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ20/Δ2lϕÞLedge þ 1

q
for an edge of length Ledge.

Therefore, for B > Bc [see Fig. 1(a)]

σ12 ¼
μ0 þ μ

2μ0
¼

μ0 þ μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2

0

Δ2lϕ
L>
edgeþ1

r
2μ0

: ð14Þ

In a percolation cluster of size ξ, the edge length is ðξ2/aÞ,
where a is the cutoff length scale of the percolation
model. The total edge length is L>

edge¼ðledge/ξÞðξ2/aÞ¼
ledgeðξ/aÞ. The linear size of the percolation cluster ξ
scales as

ξ ¼ a

�jBc − Bj
B0

�
−ν

þ a; ν ¼ 1.33: ð15Þ

With the above choice, we see that ðL>
edge; σ12Þ → ðledge; 1Þ

as B → ∞ (assuming ð2lϕμ20/ℏ2v2fÞledge is small), and

ðL>
edge; σ12Þ → ð∞; 1

2
Þ as B → Bc.

But ξ can only increase up to ledge, the width of
superconductor covered Hall bar, beyond which ξ remains
as ledge in the metallic phase in Fig. 1(b). To model such a
behavior, we choose

L>
edge ¼ a−1ξledgeΘðB − BcÞΘðledge − ξÞ

þ a−1l2edgeΘðξ − ledgeÞ
þ a−1l2edgee

ðledge−ξÞ/ξΘðBc − BÞΘðledge − ξÞ; ð16Þ

where ΘðxÞ ¼ 1 if x > 0 and ΘðxÞ ¼ 0 if x < 0. When
B > Bc, the above gives L>

edge ¼ a−1ξledge or a−1l2edge near
Bc [see Fig. 2(b)]. When B is much less than Bc,
we also assign L>

edge a very large value to make

μ0/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ20/Δ2lϕÞL>

edge þ 1
q

vanish. This allows us to com-

bine the B > Bc and B < Bc results together later. For
B < Bc [see Fig. 1(c)]

σ12 ¼
μ0 − μ

2μ0
¼

μ0 −
μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ2
0

Δ2lϕ
L<
edgeþ1

r
2μ0

;

L<
edge ¼ a−1ξledgeΘðBc − BÞΘðledge − ξÞ

þ a−1l2edgeΘðξ − ledgeÞ
þ a−1l2edgee

ðledge−ξÞ/ξΘðB − BcÞΘðledge − ξÞ: ð17Þ

We can combine the B > Bc and B < Bc cases:

σ12 ¼
1

2

0
BBB@1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ2
0

Δ2lϕ
L>
edge þ 1

r −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ2
0

Δ2lϕ
L<
edge þ 1

r
1
CCCA: ð18Þ

With the above design of L>
edge and L<

edge, only

one of the two terms in 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ20/Δ2lϕÞL>

edge þ 1
q

−

1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ20/Δ2lϕÞL<

edge þ 1
q

contributes in either the NChern ¼
1 phase or the NChern ¼ 0 phase. In the metallic phase [see
Fig. 1(b)], both terms are small, and their difference makes
the contribution even smaller. This gives rise to the 1

2

quantized two terminal conductance. The above result is
plotted in Fig. 3(a). Such a result is very close to what was
observed in Ref. [20]. But it has a very different mechanism
than what was proposed in Refs. [18,19]. In our non-Ohmic
case, the σ12 ¼ 1

2
ðe2/hÞ plateau roughly corresponds to the

metallic phase in Fig. 1 where ξ/ledge ≈ 1, with no need to
introduce a 1D chiral Majorana fermion on the edge.
Ohmic case.—From Eq. (12), we see that the contact

resistance can be much bigger than h/e2, if γδLedge/lϕ is
small enough. From the equation dμðxÞ ¼ −γðdx/lϕÞμðxÞ
and for a given total length of the edge channel Ledge,
we find μ ¼ μ0e−γLedge/lϕ . Therefore, for B > Bc [see
Fig. 1(a)] σ12 ¼ ðμ0 þ μÞ/ð2μ0Þ ¼ ð1þ e−γLedge/lϕ /2Þ,

V dependence

σ 1
2

1 1−
 0

 0.2

 0.8

 1

c(B−B )/B0

(b)

12
σ

(B−B )/Bc 0

 1

0.8

0.2

−1
 0

 1

(a)

FIG. 3. Two terminal conductance σ12 as a function of the
magnetic field B. (a) Non-Ohmic case (18), with ledge/a ¼ 70 and
2μ20ledge/ðΔ2lϕÞ ¼ 0.12. Deviation of σ12 from e2/h and 0 will
have a clear voltage V ¼ μ0/e dependence. (b) Ohmic case (19),
with γðledge/lϕÞ ¼ 1/14. The curve for the Ohmic case is
independent of the percolation cutoff length scale a.
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where Ledge ¼ ðledge/ξÞðξ2/aÞ ¼ ledgeðξ/aÞ. With ξ given in
Eq. (15), we see that Ledge → ledge as B → ∞
and Ledge → ∞ as B → Bc. Similarly, for B < Bc [see
Fig. 1(c)], σ12 ¼ ðμ0 − μÞ/ð2μ0Þ ¼ ð1 − e−γLedge/lϕ /2Þ. We
can combine the B > Bc and B < Bc cases together:

σ12 ¼
1þ sgnðB − BcÞe−ðBν

0
/jBc−Bjνþ1Þðγledge/lϕÞ

2
: ð19Þ

The above result is plotted in Fig. 3(b). Such a result for the
Ohmic case is also very close to what was observed in
Ref. [20]. But for the Ohmic case, the σ12 ¼ 1

2
ðe2/hÞ

plateau is much broader than the metallic phase in Fig. 1.
Summary.—In the percolation model, we considered two

possible cases, the Ohmic case and the non-Ohmic case;
both can explain the σ12ðBÞ curve in the experiment of
Ref. [20]. More experiments are needed to see which case
applies. If an Ohmic contact conductance is observed, it
will indicate that either the SC and/or IQH bulks have
gapless electronic states, or the electron temperature is
high.
If a non-Ohmic contact conductance σSC-Hall between the

superconductor and the IQH edge channel is observed near
σ12 ∼ 0 or σ12 ∼ 1, it will indicate the SC and IQH bulks are
fully gapped. Therefore, observing a non-Ohmic contact
conductance is a sign of clean samples, which is necessary
for further strong quantum coherent phenomena. For
instance, on such samples at a low enough temperature,
the dephasing length can become large, and 1D chiral
Majorana fermions can appear.

We would like to thank K. L. Wang, Yayu Wang, and
Shoucheng Zhang for very helpful discussions. This
research was supported by NSF Grant No. DMR-
1506475 and NSFC Grant No. 11274192.

Note added.—Recently, another paper [22] appeared where
the same conclusion was reached via a similar consider-
ation. And in another recent paper [23], the dephasing
length lϕ is assumed to be larger than the “pþ ip SC
coherence length” ξpþip (to put it another way, the
minimum width of a pþ ip SC stripe is such that 1D
chiral Majorana fermions on the two edges are well
separated). In this case, the 1D chiral Majorana edge mode
can be well defined, and gives rise to a 1

2
ðe2/hÞ plateau in

σ12. In this Letter, we consider the opposite limit lϕ < ξpþip

without a coherent 1D chiral Majorana edge mode, and
show that there is still a 1

2
ðe2/hÞ plateau. Furthermore, the B

dependence of σ12 can be made to agree with the experi-
ment very well, with a proper choice of some parameters.
In particular, if we choose B0 ∼ 200 mT, the plateau width
will be about 20 mT (see Fig. 3).
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