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We study Thouless pumping out of the adiabatic limit. Our findings show that despite its topological
nature, this phenomenon is not generically robust to nonadiabatic effects. Indeed, we find that the Floquet
diagonal ensemble value of the pumped charge shows a deviation from the topologically quantized limit
which is quadratic in the driving frequency for a sudden switch on of the driving. This is reflected also in
the charge pumped in a single period, which shows a nonanalytic behavior on top of an overall quadratic
decrease. Exponentially small corrections are recovered only with a careful tailoring of the driving
protocol. We also discuss thermal effects and the experimental feasibility of observing such a deviation.
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Introduction.—The quantization of the charge trans-
ported upon a cyclic adiabatic driving of a band insulating
system, known as Thouless topological pumping, is a
cornerstone of condensed matter physics [1], recently
experimentally realized in systems of ultracold atoms in
optical lattices [2,3]. It laid the foundations of the field of
charge pumping in mesoscopic systems [4] and played a
central role in the development of the modern theory of
polarization [5,6]. Moreover, despite being a dynamical
phenomenon, it is a conceptual key for understanding many
equilibrium properties related to the topology of the bands
in momentum space. Most famously, the quantization of
the Hall conductance in the integer quantum Hall effect
(IQHE), through Laughlin’s argument [7,8], can be seen
as a Thouless topological pump. The quantization of the
transported charge due to quantum topological effects
crucially differentiates Thouless pumping from related
phenomena. For example, parametric pumping [9] can
be of geometric origin [10], but is in general not charac-
terized by a topological quantization. Furthermore, some
types of parametric pumping, as ratchets [11] or pistonlike
pumps [12]—which share some formal analogies with
Thouless pumping—have a classical counterpart. On the
contrary, quantum tunneling effects are essential in making
the charge quantization in Thouless pumping insensitive to
a fine tuning of the model parameters [13]. Having a
topological nature, the quantization of the transported
charge shows robustness to various factors, such as disorder
or interactions [14]. Nonadiabatic effects are also believed
to be unimportant—exponentially small in the driving
frequency ω [15,16]—in analogy with the IQHE, where
the Hall plateaus show corrections that are exponentially

small in the longitudinal electric field [17]. Theoretically,
this follows from the fact that the quantized Chern number
expression for the Hall conductivity, usually obtained
through a Kubo formula in linear response, is valid at
all orders in perturbation theory [18,19].
In this Letter we study Thouless pumping out of the

perfect adiabatic limit ω → 0. In order to do that, we
perform a careful Floquet analysis of a closed, clean,
noninteracting system—the driven Rice-Mele model—in
the thermodynamic limit. By analyzing the charge pumped
after many cycles when the system starts from the initial
ground-state Slater determinant, we find that for a suddenly
switched-on driving, the pumped charge shows a deviation
from perfect quantization that is always polynomial in the
driving frequency ω, contradicting the expected topological
robustness. This quadratic deviation is present also after a
finite number of pumping cycles, even if apparently hidden
under a highly oscillatory nonanalytic behavior [19] in ω.
An exponentially small deviation would be obtained only if
one was able to prepare the system in a specific Floquet
state, which can be approximately obtained only with a
suitable switch-on of the driving. We also discuss the
effects of a thermal initial state.
Model and method.—A paradigmatic model for Thouless

pumping is the driven Rice-Mele (RM) [20] model:

ĤRMðtÞ ¼ −
XN
j¼1

ðJ1ðtÞb̂†jâj þ J2ðtÞâ†jþ1b̂j þ H:c:Þ

þ
XN
j¼1

ΔðtÞðâ†jâj − b̂†jb̂jÞ: ð1Þ
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Here â†j and b̂†j create a spinless fermion at cell j in
sublattice A and B, respectively, and we assume a half-
filling situation. This simple tight-binding model describes
the physics of cold atom experiments in some regimes
[2,3]. The instantaneous spectrum becomes gapless for
J1 ¼ J2 and Δ ¼ 0, and a quantized adiabatic pumping is
realized when a closed path in the (J1 − J2, Δ) parameter
space encloses such a degeneracy point [21]. In the
following, we will parametrize J

2
1ðtÞ ¼ J0 � δ0 cos½φðtÞ�,

andΔðtÞ ¼ Δ0 sin½φðtÞ]. By choosing φðtÞ ¼ ωtwe realize
a sudden switch on of the driving. [We will also discuss
different choices of φðtÞ.] We impose periodic boundary
conditions (PBC), and use momentum k in the Brillouin
zone (BZ) ½−ðπ=aÞ; ðπ=aÞÞ to reduce the dynamics to N
independent two-dimensional Schrödinger problems,
which can be numerically integrated by a fourth-order
Runge-Kutta method.
Floquet theory of the Thouless pump.—Given the time

periodicity of the Hamiltonian in a Thouless pump, with
period τ ¼ 2π=ω, it is natural to employ a Floquet analysis
[16,19,22–24]. Because of the discrete time-translation
invariance, there exists a basis of solutions of the time-
dependent Schrödinger equation, that are periodic up
to a phase: the Floquet states jψαðtÞi ¼ e−ði=ℏÞεαtjϕαðtÞi
[25,26]. The τ-periodic states jϕαðtÞi are the so-called
Floquet modes and εα are the quasienergies: they are
defined modulo an integer number of ℏω ¼ 2πℏ=τ; hence,
it is possible to restrict them to the first Floquet Brillouin
zone (FBZ) ½−ℏω=2;ℏω=2Þ.
In a PBC ring geometry, the total current operator ĴðtÞ is

obtained as a derivative of ĤðtÞ with respect to a flux Φ
threading the ring, Ĵ ¼ ∂κĤ=ℏ, where κ ¼ ð2π=LÞðΦ=Φ0Þ,
L is the length of the system, and Φ0 the flux quantum.
As a consequence, the charge pumped in one period
τ by a single Floquet state jψαðtÞi is [16,19,22,23]
QαðτÞ¼ð1=LÞR τ

0 dthψαðtÞjĴðtÞjψαðtÞi¼ðτ=ℏLÞ∂κεα. For
a translationally invariant system, each completely filled
Floquet-Bloch band with (single-particle) quasienergy
dispersion εα;k would contribute to the charge pumped
(in the thermodynamic limit L → ∞) as

QαðτÞ ¼
1

ℏω

Z þπ
a

−π
a

dk
∂εα;k
∂k ; ð2Þ

where we have replaced the κ derivative with a k derivative,
since εα;k depends on kþ κ. Thus, if εα;k wraps around
the FBZ in a continuous way as a function of k, QαðτÞ
is equivalent to the winding number of the band;
i.e., the number n of times εα;k goes around the FBZ,
εα;þðπ=aÞ − εα;−ðπ=aÞ ¼ nℏω, and QαðτÞ is therefore quan-
tized: QαðτÞ ¼ n. This is what happens in the extreme
adiabatic limit ω → 0: if jΨαðtÞi is a Slater determinant
made up of the instantaneous Hamiltonian Bloch eigen-
states eikxuα;kðx; tÞ belonging to a filled band Eα;kðtÞ, the

adiabatic theorem guarantees that such a state returns onto

itself after a period τ, jΨαðτÞi ¼ ei
P

BZ
k
ðγα;k−θα;kÞjΨαð0Þi,

by acquiring a geometric (Berry) phase γα;k ¼R
τ
0 dtihuα;kj∂tuα;ki and a dynamical one θα;k ¼R
τ
0 dtEα;kðtÞ=ℏ. This in turn implies that jΨαðtÞi is a
Floquet state with quasienergy ε0α;k ¼ ℏð−γα;k þ θα;kÞ=τ.
Substituting in Eq. (2), only the geometric phase survives,
leading to the Thouless’ formula [1],

QαðτÞ ¼
Z þπ

a

−π
a

dk
2π

Z
τ

0

dtiðh∂kuα;kj∂tuα;ki − c:c:Þ; ð3Þ

identifying the pumped charge with a Chern number [19].
Let us see what happens away from the adiabatic limit

ω → 0. We consider a lattice model with a finite number of
bands, such as Eq. (1). The sum of the winding numbers
of all bands will be zero, since the sum of Chern numbers of
a finite-dimensional Hamiltonian must be zero [19]. This
fact, as noticed in Ref. [19], implies that the quasienergy
spectrum must contain some crossings if at least one
quasienergy band has nonvanishing winding number.
These crossings, however, are not stable [19]: according
to Wigner and von Neumann [27], a true crossing requires,
for the present case of a complex 2 × 2 unitary operator, the
tuning of at least three real parameters, while the quasie-
nergy spectrum depends only on two, τ and k. Hence one
expects, generically, that crossings turn into avoided cross-
ings with opening of gaps for any finite τ—in the present
case at the border of the FBZ—implying a deviation from
perfect quantization of the pumped charge for the Floquet
band under consideration.
To better understand this point, let us focus on the

Floquet-Bloch band whose pumped charge is closest to
the integer value of the adiabatic limit. This band can be
constructed [16] by choosing, for each k, the Floquet
mode with (period-averaged) lowest-energy expectation
jϕLE;kðtÞi. In the left panel of Fig. 1 we show a typical
quasienergy spectrum of the RM model: the bold line
denotes the lowest-energy Floquet band. In the right panel
we zoom in the region around an avoided crossing (solid
line),comparing with the perfect crossing occurring for the
adiabatic approximation ε0α;k (dashed line): the visible gap
is exponentially small in 1=ω—as it happens for all the
gaps that open at such avoided crossings [28]. This implies
that the lowest-energy Floquet band does not wrap con-
tinuously around the FBZ. Accordingly, its pumped charge

QLE ¼ ðℏωÞ−1 Rþðπ=aÞ
−ðπ=aÞ dk∂kεLE;k deviates from an integer

by terms proportional to the sum of the gaps when ω > 0.
This deviation is, therefore, exponentially small in 1=ω (a
similar result was found in Ref. [16] for a different model);
see Fig. 2(a). Summarizing, if we were able to prepare an
initial state coinciding with the lowest-energy Floquet
band, the deviation from perfect quantization would be
exponentially small. Nevertheless, in any real situation, the
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initial state jΨð0Þi of the system is not a Floquet state: a
more realistic starting point would be to assume that jΨð0Þi
is the ground state of the initial Hamiltonian Ĥð0Þ before
pumping is started. Whichever the initial state, any local
observable attains, upon periodic driving and in the
thermodynamic limit, a periodic steady state with the same
periodicity as the driving [29]. This asymptotic regime is
described by the Floquet diagonal density matrix [29,30];
in an integrable system this density matrix is not thermal,
but is given by a generalized Gibbs ensemble. Let us denote
by QðmτÞ the total charge pumped in the first m periods
starting from the initial ground state jΨð0Þi of Ĥð0Þ. The
asymptotic charge pumped in a single cycle, obtained from
the infinite time limit, is given by the Floquet diagonal
ensemble [31]:

Qdiag ≡ lim
m→∞

QðmτÞ
m

¼ 1

ℏω

X
α

Z þπ
a

−π
a

dknα;k
∂εα;k
∂k ; ð4Þ

where nα;k ¼ hΨð0Þjf̂†α;kf̂α;kjΨð0Þi is the initial ground-
state occupation of the Floquet-Bloch ðα; kÞ mode, with
f̂†α;kj0i ¼ jϕα;kð0Þi. The occupations nα;k can give rise to a
stronger deviation from quantization than the gaps, as we
are now showing.
Results.—In Fig. 2(b) we plot the diagonal pumped

chargeQdiag, calculated from Eq. (4), for the RM model (1)
as a function of the driving frequency ω, close to the
adiabatic limit ω → 0, for the same parameters as Fig. 1.

The driving is suddenly switched on: φðtÞ ¼ 0 when t < 0
and φðtÞ ¼ ωt for t ≥ 0, as realized in the experimental
setting of Ref. [2]. The numerically determined points
show a clear quadratic deviation with ω from the fully
adiabatic integer value 1. We now show that this power-law
deviation essentially originates from the Floquet bands
occupations nα;k. To understand this point, consider the
lowest-energy Floquet band εLE;k, and the associated
occupations nLE;k ¼ hΨð0Þjf̂†LE;kf̂LE;kjΨð0Þi. One can
develop a perturbation theory in ω for the Floquet modes,
along the lines of Ref. [33], to show that for our model

nLE;k ¼ 1 −
����ℏωhu1;kð0Þj∂su0;kð0Þi

E1;kð0Þ − E0;kð0Þ
����
2

þOðω3Þ: ð5Þ

Here, s ¼ t=τ is a rescaled time, while Eα;kðtÞ and juα;kðtÞi,
with α ¼ 0, 1, are the energy and the periodic part of the
two instantaneous Bloch eigenfunctions. The analytic
calculation is simple:

nLE;k¼1−
1

64

�
ℏωΔ0

J20þδ20þðJ20−δ20ÞcosðkaÞ
�

2

þ���; ð6Þ

leading to quadratic corrections to Qdiag. When δ0 ¼ J0,
Eq. (6) predicts that nLE;k is k independent and can be taken

-0.1

0

0.1

0 2

k

k a
1.3574 1.3664

-5

0.1

10

FIG. 1. Top left: quasienergy spectrum of the Rice-Mele
model Δ0 ¼ 3J0, δ0 ¼ J0, ω ¼ 0.2J0=ℏ. The thick band is
the lowest-energy Floquet band εLE;k. Top right: (solid line)
enlargement of the previous figure close to the upper border of
the FBZ around ka ¼ 1.3664; the dashed line denotes the
quasienergies in the adiabatic limit ε0α;k. Notice the gap of order
10−6. Bottom: A cartoon of the Rice-Mele model (left) and a
path in parameter space.

(a)

(b)

FIG. 2. (a) The deviation from 1 of the charge pumped by the
lowest-energy Floquet band (proportional to the sum of gaps) as a
function of 1=ℏω, with its exponential fit (red solid straight line).
(b) Deviations from 1 of the diagonal pumped charge Qdiag in the
RM model for a sudden switch on of the driving. The smooth
curve 9

128
ðℏω=J0Þ2 is obtained from Eq. (6). The model param-

eters are Δ0 ¼ 3J0, δ0 ¼ J0.
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out of the integral in Eq. (4): we can calculate the charge
deviation given by 1

128
ðℏωΔ0=J20Þ2, which perfectly fits the

numerical data points, as shown in Fig. 2(a) for Δ0 ¼ 3J0.
It is apparent from Eq. (6) that the nonadiabatic corrections
can be more or less pronounced, depending on the
parameters of the driving (Δ0, δ0). Figure 3 illustrates
how the deviation from quantization for a fixed value of
frequency, ω ¼ 0.05J0=ℏ, depends on (Δ0, δ0). In the main
plot, we fix the value δ0 ¼ J0 as before and we vary the
dimensionless ratio r ¼ Δ0=δ0. According to Eq. (6), the
deviation increases with r as ðℏ2ω2=128J20Þr2. The agree-
ment with the numerical data for this choice of ω is very
good up to r≲ 12, where higher orders of the perturbation
theory (5) become relevant. Conversely, in the inset of
Fig. 3 we fix r ¼ Δ0=δ0 ¼ 3 and we consider the depend-
ence on δ0=J0: we see that the deviation shows a minimum
around δ0 ¼ J0. Summarizing, the deviation should be
more noticeable for paths in parameter space flattened on
the Δ axis and far from δ0 ¼ J0. Note that a small δ0=J0
corresponds to a weak pumping regime: quite surprisingly,
this seems to imply a stronger nonadiabaticity. The pos-
sibility of controlling Hamiltonian parameters in ultracold
atoms experiments makes the detection of these nonadia-
batic effects likely feasible.
It is, however, possible to devise driving schemes that

lead to a better filling of the lowest-energy Floquet band.
The Floquet adiabatic theorem [34–37] suggests that a
sufficiently smooth variation of the instantaneous driving
frequency ωðtÞ ¼ φ̇ðtÞ would lead to a much smaller
deviation of the population nLE;k, and hence of Qdiag, from
an integer value. This is what a detailed analysis of these
issues, presented elsewhere [38], finds. Incidentally, a
smoother switch on of the periodic driving is what the
experimental realization of Ref. [[3]] adopts.

We now address the issue of nonadiabatic deviation for a
finite number of pumping cycles. Diagonal expectation
values are indeed attained after some transient and become
exact only after an infinite number of pumping cycles. In
Fig. 4 we plot the charge pumped after a single cycle,QðτÞ,
as a function of ω: we see that QðτÞ exhibits remarkable
beatinglike oscillations, on top of the overall quadratic
decrease ofQdiag, which become faster and faster as ω → 0.
The theoretical prediction, according to a theorem of
Ref. [19], is that the finite-time pumped charge must have
an essential singularity in ω ¼ 0. The behavior that we find
is indeed compatible with the presence of nonanalyticities,
possibly of the kind of sinðc=ωÞ.
An alternative source of deviation from perfect quanti-

zation is finite temperature. In ultracold atom experiments,
it is reasonable to consider the dynamics to be coherent
even if the initial state is a thermal density matrix ρ̂T
at temperature T. The zero-temperature unitary evolution
results of Eq. (4) get modified only through the replacement
of the occupations nα;k with thermal ones nTα;k ¼
Trðρ̂Tf̂†α;kf̂α;kÞ. The final result is

nTα;k ¼ tanh½−βE0;kð0Þ�nα;k þ
eβE0;kð0Þ

2 cosh½−βE0;kð0Þ�
; ð7Þ

where we used that E0;k ¼ −E1;k in the RM model. Thus,
the ω2 behavior of the deviation is preserved, but can be
hidden by thermal effects. They are exponentially small
when the temperature T is much smaller than the initial gap.
For the specific choice used before, δ0 ¼ J0, thermal
corrections only amount to multiplying the T ¼ 0 result
by a factor tanh½βE1;kð0Þ�, which turns out to be k
independent. In this case E1;kð0Þ ¼ 2J0 and thermal effects
start to compete with the nonadiabatic ones only when T is
of the order of the gap, kBT ≈ J0.
Conclusions.—We have studied what happens to the

quantization of the Thouless pumped charge out of the

FIG. 3. Deviations from the integer value of the diagonal
pumped charge Qdiag in the RM model versus the aspect ratio
r ¼ Δ0=δ0 of the driving ellipse for δ0 ¼ J0, for a sudden switch
on of the driving with frequency ω ¼ 0.05J0=ℏ. The smooth
curve is 1

128
ðℏω=J0Þ2r2 and it was calculated with the first order

perturbative calculation of the main text. In the inset, the
deviation from 1 of Qdiag for a fixed r ¼ 3 as a function of
δ0: The minimum sits at δ0 ¼ J0.

FIG. 4. The charge pumped after the first period, QðτÞ, as a
function of the frequency ω, for the RM model with a suddenly
switched on driving (smooth blue line). The red dotted line is
the corresponding diagonal ensemble value Qdiag, reported in
Fig. 2(b). The model parameters are Δ0 ¼ 3J0, δ0 ¼ J0.
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perfect adiabatic limit. Within a Floquet framework, we
have found that this transport phenomenon is in general not
robust to nonadiabatic effects despite its topological nature.
When the driving is switched on suddenly, ϕðtÞ ¼ ωt, or
too fast [38], we see that the long-time asymptotic value of
the pumped charge deviates from the quantized value in a
polynomial fashion, i.e., quadratically in the driving fre-
quency. This observation is, we believe, model indepen-
dent, since it requires only that the initial state is the ground
state (or any other eigenstate) of the initial Hamiltonian.
The fact that a topologically robust property can be ruined
by the occupation factors of the Floquet bands is in line
with what was found in a resonantly driven graphene layer
[39]. Our findings should be, in principle, observable in
ultracold atoms experiments (for instance, with the meth-
ods used in Refs. [2,3]). Perspectives of future work include
the study of the pumped charge in the prethermal regime of
a nonintegrable system [28] and the analysis of disorder,
especially in connection with the stabilization of charge
pumping in a many-body localized system. Another
important point will be understanding the switch on time
scale marking the crossover between power-law and
exponentially small deviations from quantized pumping.

We thank J. Avron, M. V. Berry, E. Berg, I. Carusotto,
M. Dalmonte, R. Fazio, F. Romeo, and M.M. Wauters
for discussions. G. E. S. acknowledges support by the
EU FP7 under ERC-MODPHYSFRICT, Grant Agreement
No. 320796. A. R. acknowledges financial support from
EU through project QUIC (under Grant Agreement
No. 641122) and from “Progetti interni—Scuola
Normale Superiore.”

[1] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[2] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L.

Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296
(2016).

[3] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,
and I. Bloch, Nat. Phys. 12, 350 (2016).

[4] B. L. Altshuler and I. Glazman, Science 283, 1864 (1999).
[5] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[6] G. Ortiz and R. M. Martin, Phys. Rev. B 49, 14202 (1994).
[7] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[8] C. L. Kane, Topological Insulators, edited by M. Franz and

L.W. Molenkamp (Elsevier, New York, 2013), Vol. 6, p. 3.
[9] Thouless pumping differs from the most common definition

of parametric pumping, which refers to a model device in
which a compact region in space (scattering region) is

connected ballistically to two external asymptotic regions
(reservoir). While Thouless pumping is purely quantum
[13], parametric pumping can occur both in the classical and
in quantum case (for instance in ratchets [11]).

[10] P. W. Brouwer, Phys. Rev. B 58, R10135 (1998).
[11] H. Schanz, T. Dittrich, and R. Ketzmerick, Phys. Rev. E 71,

026228 (2005).
[12] D. Cohen, T. Kottos, and H. Schanz, Phys. Rev. E 71,

035202 (2005).
[13] L. Wang, M. Troyer, and X. Dai, Phys. Rev. Lett. 111,

026802 (2013).
[14] Q. Niu and D. Thouless, J. Phys. A 17, 2453 (1984).
[15] Q. Niu, Phys. Rev. Lett. 64, 1812 (1990).
[16] W.-K. Shih and Q. Niu, Phys. Rev. B 50, 11902 (1994).
[17] K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).
[18] M. Klein and R. Seiler, Commun. Math. Phys. 128, 141

(1990).
[19] J. E. Avron and Z. Kons, J. Phys. A 32, 6097 (1999).
[20] M. J. Rice and E. Mele, Phys. Rev. Lett. 49, 1455 (1982).
[21] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,

1959 (2010).
[22] R. Ferrari, Int. J. Mod. Phys. B 12, 1105 (1998).
[23] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev.

B 82, 235114 (2010).
[24] A. Russomanno, S. Pugnetti, V. Brosco, and R. Fazio, Phys.

Rev. B 83, 214508 (2011).
[25] H. Sambe, Phys. Rev. A 7, 2203 (1973).
[26] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[27] J. V. Neumann and E. Wigner, Z. Phys. 30, 467 (1929).
[28] N. H. Lindner, E. Berg, and M. S. Rudner, Phys. Rev. X 7,

011018 (2017).
[29] A. Russomanno, A. Silva, and G. E. Santoro, Phys. Rev.

Lett. 109, 257201 (2012).
[30] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett.

112, 150401 (2014).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.106601 for a de-
tailed derivation of the Floquet diagonal ensemble value
of the pumped charge, which includes Ref. [32].

[32] J. Avron, R. Seiler, and L. Yaffe, Commun. Math. Phys.
110, 33 (1987).

[33] G. Rigolin, G. Ortiz, and V. H. Ponce, Phys. Rev. A 78,
052508 (2008).

[34] R. H. Young and W. J. Deal Jr, J. Math. Phys. (N.Y.) 11,
3298 (1970).

[35] H. Breuer and M. Holthaus, Z. Phys. D 11, 1 (1989).
[36] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95,

260404 (2005).
[37] A. Russomanno and E. G. Dalla Torre, Europhys. Lett. 115,

30006 (2016).
[38] M.M. Wauters and G. E. Santoro (to be published).
[39] L. Privitera and G. E. Santoro, Phys. Rev. B 93, 241406

(2016).

PHYSICAL REVIEW LETTERS 120, 106601 (2018)

106601-5

https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nphys3584
https://doi.org/10.1126/science.283.5409.1864
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.58.R10135
https://doi.org/10.1103/PhysRevE.71.026228
https://doi.org/10.1103/PhysRevE.71.026228
https://doi.org/10.1103/PhysRevE.71.035202
https://doi.org/10.1103/PhysRevE.71.035202
https://doi.org/10.1103/PhysRevLett.111.026802
https://doi.org/10.1103/PhysRevLett.111.026802
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1103/PhysRevLett.64.1812
https://doi.org/10.1103/PhysRevB.50.11902
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1007/BF02097050
https://doi.org/10.1007/BF02097050
https://doi.org/10.1088/0305-4470/32/33/308
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1142/S0217979298000600
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.83.214508
https://doi.org/10.1103/PhysRevB.83.214508
https://doi.org/10.1103/PhysRevA.7.2203
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRevX.7.011018
https://doi.org/10.1103/PhysRevX.7.011018
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1103/PhysRevLett.112.150401
https://doi.org/10.1103/PhysRevLett.112.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.106601
https://doi.org/10.1007/BF01209015
https://doi.org/10.1007/BF01209015
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1063/1.1665129
https://doi.org/10.1063/1.1665129
https://doi.org/10.1007/BF01436579
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1209/0295-5075/115/30006
https://doi.org/10.1209/0295-5075/115/30006
https://doi.org/10.1103/PhysRevB.93.241406
https://doi.org/10.1103/PhysRevB.93.241406

