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When a d-dimensional quantum system is subjected to a periodic drive, it may be treated as a (dþ 1)-
dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a
limited level of control of the effective potential along the synthetic direction. In this work, we introduce a
new mean for controlling the Floquet synthetic dimension. We show that arbitrary potentials, as well as
edges in the synthetic dimension, could be introduced using a memory component in the system’s
dynamics. We demonstrate this principle by exploring topological edge states propagating normal to
synthetic dimensions. Such systems may act as an optical isolator which allows the transmission of light in
a directional way. Also, we suggest an experimental realization of the memory effect in spins coupled to
nanofabricated Weyl semimetal surface states.
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Introduction.—The discovery and control of new phases
of matter are at the heart of condensed matter physics. In
recent years, several new means of realizing interesting
quantum phases have been proposed: synthetic dimensions
and periodic drives. Synthetic dimensions constitute a
reinterpretation of discrete internal degrees of freedom that
play the role of lattice sites and, hence, of additional
dimensions. Several physical realizations of synthetic
dimensions were put forward [1–6]. Some use ultracold
gases [7–9], where the synthetic dimension is implemented
by employing internal atomic states, and some use optical
systems [10–13], in which the modes of a ring resonator
at different frequencies take the role of the lattice sites.
Periodic drives have also been proposed as a tool for
generating new phases. They may alter the electronic
spectrum of crystals [14–35], leading to exotic phases
and phase transitions, among them, the topological,
Anderson, and anomalous Floquet insulators [23–28],
time crystals [32–35], and the many-body localization-
delocalization transition [29–31].
Periodic drives may also modify the system by intro-

ducing a synthetic dimension. Within the Floquet frame-
work, quantum states become dressed by all possible
harmonics of the drive frequency (photons). As used in
Ref. [36], the number of photons (i.e., the harmonic)
appearing in a Floquet dressed state serves as a synthetic
dimension. A related path to a synthetic dimension is the
use of the photon number in an irradiated optical cavity
[10–13]. While this strategy allows introducing additional
dimensions which are externally controlled, it has a strong
drawback: The effective potential that the system exhibits
along the synthetic dimensions cannot be controlled.
Furthermore, for Floquet-induced synthetic dimensions,
the time derivative in the Schrödinger equation results in

a linear potential, and hence a force, along the Floquet
dimension. Additionally, the Floquet synthetic dimension
is always translational invariant; i.e., only hopping and
uniform on-site terms are allowed [37] and edges cannot be
formed, which particularly hampers the observation of
topological edge state behavior [38].
In this Letter, we seek to overcome these limitations

by introducing a new means to control Floquet synthetic
dimensions. The key insight is that allowing the system’s
dynamics to depend on its past provides the necessary tools
for controlling the effective potential the system exhibits
along the synthetic dimension. Just as real-space potentials
correspond to mixing different momentum states, nonuni-
form potentials in the Floquet space correspond to non-
diagonal elements in the time domain. Below, we
demonstrate how nonlocality in time, brought about by
memory effects, in particular, allows the control of the
effective potential as a function of photon numbers. Not
only could the undesirable effective electric fields be
eliminated, but edges in the synthetic dimension can also
be created. Below, we apply this idea to zero and one-
dimensional synthetic-dimension topological systems,
explain how such memory dependence could be con-
structed, and discuss possible applications.
0þ 1-dimensional model.—Our first goal is to map the

dynamics of a periodically driven quantum system, includ-
ing memory effects, into a lattice model. Consider the non-
Markovian evolution of such a quantum system:

i∂tψðtÞ ¼ HðtÞψðtÞ þ
Z

∞

0

UðτÞψðt − τÞdτ; ð1Þ

where HðtÞ ¼ Hðtþ TÞ is a time-periodic Hamiltonian
and U is a memory kernel that captures the non-Markovian
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effects in the system. At this point, consider Eq. (1) as a
mathematical object. In the next sections, we will motivate
this form and give it a physical interpretation. Since Eq. (1)
is invariant to time translations by T, its solutions have a
Floquet form:

ψðtÞ ¼ e−iηt
X∞
n¼−∞

ϕneinωt; ð2Þ

where ω ¼ 2π/T and ϕn is the Floquet amplitude for an
electronic state dressed by n photons. In contrast to the
Markovian case, Eq. (1) does not preserve the norm of ψ ,
and therefore η is a general complex number. Equations (1)
and (2) yield the following equation for the Floquet
amplitudes:

ηϕn ¼ ½ωnþ FnðηÞ�ϕn þ
X
m

Hn−mϕm; ð3Þ

where FnðηÞ ¼
R∞
0 dτUðτÞeiτðη−nωÞ and Hn ¼

R
T
0 ðdτ/TÞ×

HðtÞe−inτω. Unlike standard tight-binding models, Eq. (3)
is a transcendental eigenvalues equation, and the number
of independent solutions depends on the exact form of Fn
and H.
For simplicity, we restrict our discussion to memory

kernels of the form UðtÞ ¼ ΘðtÞΘðT − tÞuðtÞ/T, whereΘ is
the Heaviside function and uðtÞ is periodic in t with period
T. This form implies that the memory is causal and goes
back only up to a single period of the drive. In this case, the
memory kernel is fully defined by un, the Fourier compo-
nents of uðtÞ in the range t ∈ ½0; T�. In terms of un, F is
given by

FnðηÞ ¼
X
l

ul
T

Z
T

0

eiτ½ηþðl−nÞω�dτ: ð4Þ

un plays the role of a potential energy in photon space.
The scale of un characterizes the coupling of the system to
its memory.
Consider a concrete problem of a two-level system

(TLS) in the presence of a single frequency drive. From
this, we will construct a 1D topological phase. Start with

HðtÞ ¼ ½μ − cos ðωtÞ�σz þ sin ðωtÞσx; ð5Þ
where σi are the Pauli matrices and μ is a positive
parameter. We choose the memory kernel such that [39]

un ¼ −ωnΘðn0 − jnjÞσ0 þ δΘðn1 − jnjÞσz; ð6Þ
where σ0 is the identity matrix and δ is a real parameter. In
order to compete with the artificial electric field which
appears in the first term on the rhs of Eq. (3), the memory
coupling should be of the order of ωN, where N is the
extent of the flat region we would like to have. In addition,
δ sets the scale of the n-space confinement potential, which,
in turn, sets the extent of the boundary states. The smaller

this extent is, the better defined wave packets could be
created along the edge. From Eqs. (3), (5), and (6), we find

ηϕn ¼ ½ωnΘðjnj − n0Þσ0 þ F̃nðηÞ�ϕn

þ μnσzϕn −
σz þ iσx

2
ϕnþ1 −

σz − iσx
2

ϕn−1; ð7Þ

where F̃nðηÞ ¼ FnðηÞ − un and μn is μþ δ for jnj ≤ n1 and
μ otherwise.
The last three terms in Eq. (7) describe a 1D Su-

Schrieffer-Heeger (Kitaev) chain [40,41] with a jump in
the topological mass at n ¼ �n1. For jμj > 1 and
jδþ μj < 1, the region between n ¼ �n1 is in the topo-
logical phase, while the exterior is in a trivial phase. The
spectrum arising from these three terms alone is gapped
along with two zero-energy states which are localized in n
space around n ¼ �n1. The first term in Eq. (7) describes a
constant electric field which is perfectly screened in the
region jnj < n0. For n1 ≪ n0, the low-energy states are
indifferent to that field, and we may assume for simplicity
that n0 → ∞; i.e., the electric field is perfectly screened. In
that limit and for η ¼ 0 and F̃nðηÞ ¼ 0, Eq. (7) describes a
zero-energy Kitaev chain which, as explained above, has
two solutions which are localized in n space around
n ¼ �n1. We find two solutions which are localized at
the edges of the synthetic direction. The n-space wave
functions of these two solutions are depicted in Fig. 1(b),
and they are given by ψ�ðtÞ ≈ ϕ�n1e

�in1ωt. For n0 < n1 we
find that the zero-energy modes split away from zero and,
therefore, are not exact solutions of the equation. For a
general η ¼ xþ iy ≠ 0, the spectrum of the right-hand side
of Eq. (7), λi, may be found for each value of η. Only
eigenstates with η ¼ λi are true solutions of Eq. (7). We
verified numerically that there are no other solutions in the
range x; y ∈ ½−0.5; 0.5�ω; hence, the two solutions with
η ¼ 0 are gapped in the complex plane from other (bulk)
solutions.

(a) (b)

FIG. 1. (a) The equivalence between a TLS in the presence of a
drive and a memory kernel and particles hopping on a 1D
synthetic lattice. (b) In blue, the gap parameter μn [Eq. (5)], the
synthetic electric field in units of 5ℏω (red), and the absolute
square of the two solutions of Eq. (7) with η ¼ 0 (green).
Evidently, there is an electric-field-free zone in n space in which
the system hosts two localized solutions near the jump in the gap
parameter (n0 ¼ 110, n1 ¼ 50, μ ¼ 10, and δ ¼ −9.9).
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This example demonstrates how to construct a synthetic
dimension using the photon number as a lattice degree of
freedom. The inclusion of a memory kernel allowed us to
introduce potentials and, in particular, edges in the syn-
thetic dimension. We now add another dimension to find a
collection of eigenfunctions of the dynamical equation.
1þ 1-dimensional model.—We construct a 2D model

which consists of one real and one synthetic dimension. We
start with

i∂tψxðtÞ ¼
X
x0
Hx−x0 ðtÞψx0 ðtÞ þ

Z
T

0

dτ
T
ux−x0 ðτÞψx0 ðt − τÞ;

ð8Þ

where x is a lattice coordinate, Hðx − x0; tÞ is a time-
periodic tight-binding Hamiltonian, and u is the memory
kernel. For periodic or infinite systems in the real dimen-
sion, Eq. (8) can be written in Fourier space:

i∂tψðk; tÞ ¼Hðt;kÞψðk; tÞþ
Z

T

0

dτ
T
uðk;τÞψðk; t− τÞ: ð9Þ

We choose uðk; τÞ ¼ uðτÞe−iv0kτ, where uðτÞ is again given
by Eq. (6) and v0 is a real parameter. As before, the solution
has a Floquet form, and Eq. (9) becomes

ηkϕnðkÞ ¼ ½ωnþFnðηk−v0kÞ�ϕnðkÞþ
X
m

Hn−mðkÞϕmðkÞ;

ð10Þ

where Fn is as in the previous section.
We generalize the Hamiltonian of the zero-dimensional

case [42,43]:

HðtÞ ¼ ½μ − cos ðωtÞ − cosðkÞ�σz
þ sin ðωtÞσx þ v0 sinðkÞσy: ð11Þ

Taking the limit n0 → ∞ and trying solutions with ηk ¼
�jv0jk yields the following eigenvalues equation:

�v0kϕn;k ¼ f½μn − cosðkÞ�σz þ v0 sinðkÞσygϕn;k

−
σz þ iσx

2
ϕnþ1;k −

σz − iσx
2

ϕn−1;k: ð12Þ

The right-hand side of Eq. (12) is a tight-binding model of a
Chern insulator on a cylinder in the x–n plane. The Chern
number changes from 1 to 0 at n ¼ �n1. Similar to a
quantum Hall (QH) state on a cylinder, there are no low-
energy states in the 2D bulk, while for each k, two chiral
solutions with energy ϵk ¼ �v0k exist near the edges at
n ¼ �n1. Hence, we found a set of solutions labeled by k:

ψk;�ðx; tÞ ≈ eikx�iv0ktϕk;�n1e
�in1ωt: ð13Þ

The solutions may be superposed to construct a wave
packet, with a fixed number of photons, that propagates
without dispersion along the 1D chain. Similar to a 2D
quantum Hall state, where backscattering is allowed only if
a particle tunnel to the opposite edge, here, backscattering
is possible only if the number of photons in the dressed
states is changed by 2n1. If the scatterer cannot take or
supply photons, then the probability for that process is
exponentially small in the system “size” in photon space
(determined by the n1).
To add edges in the real direction, Eq. (10) can be

transformed back to real space and may be solved numeri-
cally. As in the periodic case, a set of solutions with real η
exists. Analogous to a QH state in a rectangular geometry,
there are no low-energy states in the 2D bulk, while a set of
chiral solutions, labeled by their energy η, exists along the
circumference of the 2D sample. Here, the circumference
has both real and synthetic segments near the real edges of
the chain and n ¼ �n1. A typical solution is shown in
Fig. 2(a), and it is clearly concentrated along the edges of
the combined 2D system. As expected from the QH
analogy, the solutions are propagating plane waves along
the circumference. Indeed, we find numerically that the
solutions on the left or right real space edges have the form
ψη
l/rðt; nÞ ∝ eiηðt�ξnÞ, where ξ is a constant that depends on

(a)

(b)

FIG. 2. (a) 1þ 1D case: The absolute square of the solution to
Eq. (10) with η ¼ 0, along with the synthetic field and the gap
parameter. At low energies, the system supports QH-like edge
states in the combined x − n space (n0 ¼ 48, n1 ¼ 35, μ ¼ 10,
and δ ¼ −9.9). (b) The cycle that a system of spinful particles
performs. Spin up (down) denotes a full (empty) site. The system
evolves along the state which is depicted in (a). Along the left
(right) real space edge the system emits (absorbs) photons, while
along the top (bottom) n space edge the system supports left
(right) propagation.
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the details of the edge potential. Constructing a wave
packet of different energy solutions around the left or
right edge yields Ψl/rðn; tÞ ∝ Að�ξn − tÞ, where A is an
envelope function tightly centered around zero. As long as
−n1 < n < n1, a wave packet which is localized near the
left (right) edge adsorbs (emits) photons from (to) the drive
at a constant rate ξ−1. Overall, the wave packet performs a
cycle in the x − n plane. If a wave packet with a well-
defined number of photons, n1, is prepared in the bulk of a
1D chain, then it moves at a constant velocity and without
dispersion toward the right edge. At the edge, it emits
photons at a constant rate until it reaches n ¼ −n1. It then
moves toward the opposite edge, where it absorbs back
photons from the drive until n ¼ n1 again and therefore
completes a cycle. Figure 2(b) illustrates such a cycle for a
chain with an internal pseudospin degree of freedom. In
Supplemental Material [44], we describe a local-in-time
framework in which the dynamics of these systems may be
simulated efficiently.
Implementation.—A dynamical equation of the form of

Eq. (1) could be engineered by using an auxiliary sub-
system. Consider a two-level system, described by ϕðtÞ and
governed by HϕðtÞ, which is coupled to a one-dimensional
field ψðx; tÞ, which is governed by Hψ ðx̂Þ and lives on a
line that swirls around the two-level system [Fig. 3(a)]. The
fields’ dynamics are given by [45]

½i∂t −HϕðtÞ�ϕðtÞ ¼ −
Z

dxλðxÞψðx; tÞ; ð14Þ

½i∂t −Hψðx̂Þ�ψðx; tÞ ¼ −λ†ðxÞϕðtÞ; ð15Þ

where the coupling λðxÞ is nonzero for 0 < x < 2πLwith L
being the length of the swirl and x ¼ 0 its starting point.
The second equation may be solved formally by introduc-
ing Gψ , the Green function of the operator i∂t −Hψ ðx̂Þ.
Plugging the formal solution back yields an equation for ϕ
similar to Eq. (1), where the memory kernel is given by

Uðt − t0Þ ¼
Z

dxdx0λðxÞGψ ðt − t0; x − x0Þλ†ðx0Þ: ð16Þ

For concreteness, see Fig. 3(a), where the 1D field ψ
is realized by a quantum Hall chiral edge. Thus,
Hψðx̂Þ ¼ −iv0∂x, the Green function is Gψ ðt; xÞ ¼
iΘðtÞδðx − v0tÞ, and

UðtÞ ∼ ΘðtÞΘðT − tÞ
X
n;m≠n

2Reðλmλ†nÞ
2πðn −mÞ e

inω0t; ð17Þ

where λl are the Fourier components of λðxÞ. Equation (17)
has the general form of the memory kernel that we
considered in the previous sections. Hence, ω0 and λðxÞ
may be controlled to produce the desired uðtÞ.
In Supplemental Material [44], we discuss specific

choices of λðxÞ that yield the desired potential and edges
discussed above. The ability to generate these λðxÞ may be
achieved by means of lithography. Using the fact that the
coupling of the edge mode and the two-level system is
distance sensitive, a particular λðxÞ could be engineered by
patterning the edge that comes in contact with the two-level
system, as illustrated in Fig. 3. The distance, and therefore
also the coupling, between the edge and the two-level
system would then be angle dependent. The resolution of
the patterning would determine the level of control and the
ability to achieve more complicated potentials in photon
space. Modern nanolithography methods, such as electron-
beam lithography, allow fine patterning to a level of a single
nanometer. Overall, the desired forms of λðxÞ, which are
presented in Supplemental Material, may be effectively
approximated.
The setup in Fig. 3(a) reproduces the physics of Eq. (1).

The one-dimensional physics of Eq. (8) may be approached
by placing a 1D array of these building blocks and
introducing couplings between the different two-level
systems as illustrated in Fig. 3(b). In this example, the
edge of the quantum Hall state is replaced by the surface of
a Weyl semimetal (WSM) which supports a chiral 2D
surface state. Similar to the 1D case, a spatial resolution
may be achieve by “etching” patterns on the surface of
these materials. In this example, each site has two orbitals
corresponding to the spin or pseudospin quantum number,
which could be either full or empty. If a 1D system is
prepared such that only the most left TLS is occupied and
the drive is turned on rapidly at t ¼ 0, then the system is in
a localized state near the left edge and near n ¼ 0, and it
should evolve according to the cycle in Fig. 2(b).
Conclusions.—In this Letter, we introduced a new tool

for controlling a system’s motion and effective potential
along synthetic dimensions introduced due to a periodic
drive. By introducing a memory kernel, the potential along
a synthetic dimension can be controlled for a finite energy
window. In particular, the drive-induced synthetic dimen-
sion can possess edges that could host chiral topological

(a) (b)

FIG. 3. (a) The system in Eqs. (14) and (15). ϕ represents a
pseudospin degree of freedom which is coupled to a chiral field
ψ . The effective evolution of ϕ follows Eq. (1). (b) The one-
dimensional version of (a). Placing a 1D lattice of the system in
(a) and introducing couplings between the different TLS yields an
effective model for the ϕ field that obeys Eq. (8).
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states. We expect that the memory-assisted dynamics could
be used as a control tool in broader contexts, possibly to
protect quantum states from external noise or to induce
through feedback a desirable target state.
The use of memory for inducing synthetic dimensions

edge states could have applications in controlling the flow
of light and, in particular, its direction. These are key for
integrated optical circuits, as nonreciprocal optical devices,
like optical diodes (isolators), have the potential to largely
outperform their electronic counterparts [46]. Such devices
require time-reversal symmetry breaking. In Faraday iso-
lators, for instance, time reversal is broken by the existence
a magnetic field. Our construction may serve as a fre-
quency-dependent isolator that does not require an external
magnetic field. The chiral nature of this phase provides
the necessary ingredient, and it emerges from the circular
polarization of the drive source. At low energies, the 1D
system in Eq. (8) supports states in which photon absorp-
tion is possible only along the left edge, photon emission is
possible only along the right edge, and no emission or
absorption is possible in the bulk. By connecting the system
to input and output ports and injecting light at a frequency
which is an integer multiple of ω, the system behaves as an
isolator [47]. Also, a combination of the surface states of a
Weyl semimetal with spin-orbit-coupled wires could pro-
vide a physical realization of such an isolator. We defer a
discussion of the specifics of such a system, as well as other
potential applications of memory-based quantum control,
to future work.
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