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Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91Mn0.09As are inves-
tigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray
diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the
correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that
does not support coherent modes at large wavelengths. Our measurements point toward a magnetically
induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization
in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single
wavelength but rather should be represented as a superposition of plane waves with different wavelengths.
Our findings have strong implications for the phonon-related processes, especially carrier-phonon and
phonon-phonon scattering, which govern the electrical conductivity and thermal management of semi-
conductor-based devices.
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Impurity atoms play an important role in condensed
matter physics, in particular, in the nature of lattice vibra-
tions. They typically perturb the crystal Hamiltonian by
producing an alternation in the kinetic energy of the ions due
to amass difference relative to the host and bymodifying the
force constants around the impurity atom [1,2]. Hence, the
vibrationmodes are expected to bemodified from their usual
sinusoidal wave forms, which consequently leads to impor-
tant implications for the thermal and electrical properties of
the host crystal, in particular, heat conductivity and carrier
mobility [3]. This is of vital importance for electronic
devices whose miniaturization not only increases the
processing rate but also the quantity of heat that, sub-
sequently, might lead to large thermal loads and device
failure. In the context of materials with large technological
relevance, semiconductors doped with magnetic impurities,
commonly known as diluted magnetic semiconductors
(DMS), open up new prospects for extending the informa-
tion processing and storage beyond conventional electronics
by merging the long-range magnetic ordering characteristic
of ferromagnets with the versatile properties of conventional

semiconductors [5,6]. The large number of magnetic impu-
rity atoms needed to mediate the ferromagnetic coupling
(∼2.2 × 1020 cm3) will considerably affect the traveling-
wave-nature of the host-crystal normal modes and phonon
transport. In contrast to amorphous and disordered solids
where localized and quasilocalized modes have been exten-
sively studied and debated [1,2,7–14], the experimental
work on doped semiconductors with correlated impurities
remains scarce. Motivated by this fact, our objective was to
observe how phonon modes in DMSs develop and evolve
when magnetic moments interact with each other.
We have probed the vibrational modes of the laser

excited Ga0.91Mn0.09As by time-resolving the scattering
of x-rays by phonons [15,16]. At room temperature, all
components of an impulsively generated acoustic phonon
pulse are traveling wave normal modes with a well-defined
wave vector q. When the coupling of magnetic impurities
sets in, long wavelength components of the acoustic pulse
are profoundly affected. The length-scale and temperature
dependence of x-ray diffraction waveforms indicate that the
magnetic correlation of randomly distributed impurities
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quasilocalizes the long wavelength vibrational modes. In
contrast to amorphous solids and crystalline solids with
heavy impurities [1,7,13], sinusoidal displacement patterns
of vibrational modes are destroyed by the phase shifts at the
impurity atoms rather than by the extra displacement
amplitudes. The experiments were performed at the X-
Ray Pump-Probe (XPP) Instrument, Linac Coherent Light
Source (LCLS) X-ray FEL [17]. An ultrashort (50 fs) near-
infrared (800 nm) laser pulse excites coherent acoustic
phonon modes [18–21] in a 1 μm thick Ga0.91Mn0.09As
film with a Curie temperature Tc ≈ 90 K [22]. A nominally
50 fs, 10.363 keV x-ray pulse, just below the Ga K-edge
energy, is used to probe the sample (see Supplemental
Material [23], Sec. A, which includes Refs. [17,22,24–30]).
Any phonon-induced periodicity in the lattice with a
period λq ¼ 2π/q will introduce sidebands to the rocking
curve peak, at an angular separationΔθ ∝ q from the Bragg
peak, which oscillate at the phonon frequency ωq (see
Supplemental Material [23], Sec. B, which includes
Refs. [18–21,31]).
In Figs. 1(a)–1(c), we show the time-dependent diffracted

intensity from Ga0.91Mn0.09As (004 reflection) at room
temperature, probing spatial periodicities q ¼ 0.015 π/a,
0.012 π/a, and 0.010 π/a, respectively, with a ¼ 5.673 Å
being the lattice constant of Ga0.91Mn0.09As [32]. Distinct
temporal oscillations are observed that correspond to coher-
ent acoustic phonons at frequencies ωq ¼ 2π/ð22 psÞ,
2π/ð28 psÞ, and 2π/ð31 psÞ, respectively. A Fourier trans-
formation of the data gives the dispersion relation for the

longitudinal acoustic branch with a speed of sound vs;exp ¼
3400� 400 m/s for longitudinal acoustic modes propagat-
ing along the [001] direction, with the error bar resulting
from the uncertainty in the determination of the rocking
curve peak. This value is smaller than the sound velocity in
GaAs, vs;GaAs ¼ 4780 m/s, due to the charge redistribution
in the host crystal induced by the doping [33]. Extrapolating
the spin polarized density-functional-theory calculations of
elastic constants to a doping density of x ¼ 0.09 [33], we
obtain vs ¼ 3800 m/s, which agrees well with our exper-
imental value. These data confirm that the probed phonon
modes can be described by elastic waves having a well-
defined spatial periodicity, implying that q is a good
quantum number. The data compare well with simulations
that model dynamical x-ray diffraction in the presence of
strain. Here, the rocking curves have been calculated for a
particular strain profile using the method given byWie et al.
[34], whereas the strain has been calculated using the model
of Thomsen et al. [35], extended to include the lattice
heating time [21,36]. The damping of the oscillations results
from the dephasing due to thewave vector resolution limit of
the probe beam.
The key observation of our work becomes obvious

from the data depicted in Fig. 1, panels (d),(e),(f), where
time-dependent x-ray diffraction intensities measured at
temperature T ≈ 60 K, but the same laser fluence as
previous measurements at room temperature are reported.
We show normalized intensities that probe acoustic phonon
modes with spatial periodicities q ¼ 2π/λq ¼ 0.018 π/a,
0.015 π/a, and 0.012 π/a, respectively. The data are
compared with predictions of dynamical theory of x-ray
diffraction that assume acoustic modes with well-defined
spatial periodicity q, similar to those used to simulate the
room temperature measurements. The data measured at
q ¼ 0.018 π/a resemble the form of a damped elastic wave
with frequency ωq ¼ 2π/ð19 psÞ and a damping time
constant τ ¼ 12 ps [black solid line in Fig. 1(d)], indicating
that the q vector is still a good quantum number. The mode
at q ¼ 0.015 π/a shows temporal oscillations at
ωq ¼ 2π/ð22 psÞ, however, with a quenched amplitude
[Fig. 1(e)]. Time-dependent-diffracted intensity probing
the spatial periodicity q ¼ 0.012 π/a [Fig. 1(f)] has a
waveform that is markedly changed compared to that of
an elastic wave with a defined q vector. In effect, only the
first half period of the oscillation is observed. Evidently, the
measured time-resolved diffraction depends on the ferro-
magnetic ordering of Mn spins; Figure 2 shows a typical
critical behavior of the mode q ¼ 0.015 π/a with temper-
ature as an example that demonstrates the dependence
of measured time-dependent x-ray diffraction on the
magnetic correlation of impurities. The data resemble a
critical behavior around Tc, similar to that observed in
the susceptibility [37,38], resistivity [39], and heat capacity
[40], thus indicating a dependence on the spin-spin
correlation function ΓðS0;S1Þ ¼ hS0S1i − hS0ihS1i. The

FIG. 1. Measurements (filled circles) and simulations (solid
lines) of time-dependent x-ray diffracted intensity from
Ga0.91Mn0.09As. Panels (a),(b),(c) show data measured at room
temperature, whereas panels (d),(e),(f), at 60 K. The data have
been compared with predictions of dynamical theory of x-ray
diffractions that assume acoustic modes with well-defined spatial
periodicity q (red solid lines). The black solid line in panel
(d) represents a damped elastic wave with q ¼ 0.018 π/a,
ωq ¼ 2π/ð19 psÞ and damping time constant τ ¼ 12 ps.
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damping of oscillations (see right inset) is related to the
scattering of phonons from spin fluctuations with a cross
section scaling as ½Tc/ðT − TcÞ�5/3 [41,42].
From Figs. 1(d)–1(f), it is evident that during the first

16 ps following the photoexcitation, the measured data
match well with the simulations, indicating that in this time
scale, the lattice is still in the state that allows traveling
wave normal modes. This observation also implies that the
initial excitation of coherent acoustic phonons is provided
by the same mechanisms as that at room temperature. The
loss of coherence in Figs. 1(e) and 1(f) cannot be explained
in terms of phonon-defect and phonon-phonon scatterings,
since both processes, having scattering rates that increase
with q [43], should affect large q modes instead of small q
modes, contrary to our observations.
While at room temperature, the acoustic pulse could be

well described in terms of traveling wave normal modes,
time-dependent x-ray diffraction measured around and
below Tc indicates the transition of the lattice into a
disordered state that does not support the propagation
of long-wavelength phonon modes. The length-
scale dependence of x-ray diffraction waveforms in
Figs. 1(d)–1(f) suggests a spatial distortion of the vibra-
tional modes. The reversibility and reproducibility of this
effect has been checked by recording each time scan
twice and by measuring the same data set at a higher laser
fluence. In terms of modeling, the solid cannot be treated
as continuum medium. However, a qualitative description
that captures the physics observed here can be obtained
by considering the equation of motion for acoustic

modes in the presence of a spin-phonon interaction
(see Supplemental Material [23], Secs. C and D, which
include Refs. [1,35,44–50]),

mj
∂2u
∂t2 ¼ kαðujþ1 − ujÞ þ kβðuj−1 − ujÞ

þ rΔkmagðuiþ1 − ujÞ þ rΔkmagðui−1 − ujÞ: ð1Þ

This equation represents a linear chain composed of N
masses mj connected by springs with effective force
constants kα and kβ. Here, mj stands for the mass of an
atom (Ga, As or Mn) in the unit cell (see Supplemental
Material [23], Sec. D), uj denotes the displacement, and kα
and kβ are the effective force constants between the layers
ðj; jþ 1Þ and ðj; j − 1Þ, respectively. For a host atom
r ¼ 0, whereas for an impurity atom r ¼ 1. The spin-
phonon interaction arises due to the modulation of the
exchange constant by phonons, and it adds a magnetic
contribution Δkmag ≈ −J00ðuÞhS0S1i to the spring constants
of magnetic impurity atoms, with J00ðuÞ being the second
derivative of the exchange interaction with the phonon
coordinate and hS0S1i the two-spin correlation function
[44]. In (Ga,Mn)As with a nominal Mn doping of 9%, a
fraction of Mn is incorporated in interstitial positions [29].
Assuming that interstitial atoms form pairs with substitu-
tional Mn atoms, the partial concentrations of substitutional
and interstitial impurities, xs ≈ 5.5% and xi ≈ 3.5%,
respectively (see Supplemental Material [23], Sec. A),
yield xs;eff ¼ xs − xi ¼ 2% uncompensated Mn moments.
In contrast to glasses, where a random distribution of spring
constants is assumed [14], here we use fixed springs
constants that are modified by the spin-phonon interaction
only at the Mn atoms. Figure 3 shows the effect of the spin-
phonon interaction in the long-wavelength acoustic modes
predicted by Eq. (1). In a system that has no ferromagnetic
correlations, Δkmag ¼ 0, the eigenvectors have a harmonic
spatial dependence, thus allowing a single q to be asso-
ciated with each frequency ωq, Figs. 3(a) and 3(c). When
Δkmag ¼ −0.018ðkα þ kβÞ/2 ≈ −24.7 meV/Å2 (i.e., the
impurity atoms are ferromagnetically coupled), with kα ¼
25 N/m and kβ ¼ 19 N/m obtained by (a) matching the
simulated and measured dispersion relations and (b) by
setting the zone boundary phonon frequencies ωLOðXÞ −
ωLAðXÞ ¼ 2πð0.4Þ THz (ωLO and ωLA are the longitudinal
optical and acoustic phonon frequencies at the X point of
the Brillouin zone)[51], low frequency modes are pro-
foundly affected, Figs. 3(b) and 3(d)[52]. The eigenvectors
cannot be assigned to a single q but rather should be
represented as a superposition of plane waves with different
q’s, or equivalently, the same frequency is carried by
several plane waves with different wave vectors. This
happens because the spin-phonon contribution on the
spring constants Δkmag alters the inertia of the magnetic
impurities. Consequently, the host atoms will adopt a mode

FIG. 2. The temperature dependence of the measured time-
dependent diffracted intensities probing the acoustic mode
q ¼ 0.015 π/a. The data for different temperatures have been
shifted along the intensity axis for better visibility. Inset: the
measured magnetization curve (left) and, the inverse of the
damping time (diamonds, right) and calculated susceptibility
(solid line, right) [37].
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pattern that is necessary to balance the forces with
neighboring atoms. The Fourier transformation power
spectrum of some selected mode eigenvectors averaged
over 100 random configurations is shown in Fig. 3(e). As q
is decreased, the eigenvectors expand in the reciprocal
space, acquire a width Δq, and quasilocalize in the real
space. The width of vibrational modes Δq increases
monotonically with Δkmag but not with the doping level
x (see Supplemental Material [23], Sec. E). A minimum
doping level, which considerably affects the periodicity of
the vibration modes, is ∼0.5%. Figure 3(f) compares the
dispersion relation of a perturbed chain, obtained by
mapping the Fourier power spectrum of mode eigenvectors
as a function of mode frequency (intensity pot), with the
linear relation ωunpertðqÞ ¼ vsq (blue dashed line). When q-
space broadening is neglected, the dispersion curve (filled
circles) deviates from the liner relation only for low q
modes, whose spatial periodicity is significantly affected.

Below a cutoff wave vector qc, the dispersion flattens (the
mode frequency becomes imaginary), and the spatial
periodicity of the lattice cannot be sampled anymore. In
these simulations, we have omitted the reduction of force
constants on each side of the interstitials. Different scenar-
ios including various interactions such as force constant
reduction and the presence or omission of antisites, are
discussed in the Supplemental Material [23], Sec. F, which
includes Refs. [1,10,53].
From the widths Δq, we can define the coherence

length, Λq ¼ 2π/Δq, which describes the average distance
between two phase interruptions in the mode eigenvector,
see Fig. 3(b). A critical coherence length Λcrit

q ≈ 2π/qc
marks a region below which the coherence length of the
mode Λq is smaller than the wavelength λq, see Fig. 4.
When Λq < λq, phonons see a disordered system and
cannot sample the periodicity of the lattice. In this context,
the wave vector is not a well-defined quantity anymore. In
Fig. 4, we compare the oscillation amplitudes of the x-ray
diffraction signal measured at 60 K, normalized to those
at room temperature [i.e., Aqð60 KÞ/Aqð300 KÞ]. The
data corresponding to the acoustic modes 0.018 π/a and
0.015 π/a follow the functional dependence of ΛqðqÞ. The
long wavelength acoustic mode q ¼ 0.012 π/a, on the
other hand, cannot be assigned to a waveform that would
describe coherent oscillation in the x-ray diffraction signal
as the wavelength of this mode, λq ¼ 2π/q ¼ 167a, is close
to the critical coherence length Λcrit

q ≈ 162a. As a result,
this acoustic mode loses its coherence faster than other
high-q modes, and in this way, it contributes to a diffusive
background rather than to the oscillatory signal, in agree-
ment with our measurements.

FIG. 3. Eigenvectors of a linear chain of atoms with randomly
distributed impurities. Panels (a) and (b) show a schematic drawing
of a mode eigenvector without and with magnetic correlation of
spins, respectively. In (a), mode eigenvectors can be described
by a sinusoidal wave with a well-defined wavelength λq. In (b),
ferromagnetic coupling of randomly distributed magnetic impu-
rities leads to a destruction of a sinusoidal pattern of a vibrational
mode. The average distance between two phase interruptions is
represented by the coherence lengthΛq. Panel (c) shows a simulated
mode q ¼ 0.018 π/a eigenvector without spin-phonon interaction
(Δkmag ¼ 0), whereas panel (d) displays modification of the mode
eigenvector when the magnetic contribution to the spring constants
around impurities has been set to Δkmag ¼ −24.7 meV/Å2. Panel
(e) shows the Fourier transformation power spectrum of selected
acoustic mode eigenvectors, and panel (f) compares the dispersion
relation with that of the unperturbed crystal.

FIG. 4. Simulated coherence length as a function of wave
vector q. The critical coherence length Λcrit

q marks the region
below which the coherence length of the mode q, Λq, is smaller
than the wavelength λq ¼ 2π/q. In this region phonons cannot
sample the periodicity of the lattice and the wave vectors cannot
rationalize them anymore. Blue triangles represent the oscillation
amplitudes of the x-ray diffraction signal measured at 60 K
normalized to those at room temperature. The data corresponding
to the acoustic modes 0.018 π/a and 0.015 π/a follow the
functional dependence of ΛqðqÞ multiplied by a constant factor.
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In conclusion, our measurements show that in ferromag-
netic semiconductors with randomly distributed magnetic
impurities, a spin-phonon interaction significantly affects
the long wavelength acoustic modes. The length scale
dependence of measured x-ray diffraction waveforms
cannot be explained by invoking phonon-defect and pho-
non-phonon scatterings mechanisms that, having rates that
increase with decreasing phonon wavelength [43], have less
pronounced effects at long wavelength modes. Instead, they
can be consistently interpreted in terms of magnetically
induced quasilocalization of vibration modes. By altering
the inertia of randomly distributed impurity atoms, a spin-
phonon interaction destroys the harmonic displacement
pattern of long wavelength vibrational modes. This obser-
vation will have important implications on many properties
of these materials in which the lattice vibrations participate,
in particular, in heat transfer, since the quasilocalization
of modes contributes to the confinement of thermal energy
rather than to its distribution. It will also contribute to the
understanding of many physical processes, such as carrier-
phonon, impurity-phonon, and phonon-phonon scattering,
whose scattering rates are typically estimated by assuming
harmonic displacement patterns of normal modes [4,43,54].
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