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We provide analytical results for the ensemble-averaged and time-averaged squared displacement, and
the randomness of the latter, in the full two-dimensional parameter space of the d-dimensional generalized
Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987)]. In certain regions of the
parameter plane, we obtain surprising results such as the divergence of the mean-squared displacements,
the divergence of the ergodicity breaking parameter despite a finite mean-squared displacement, and
subdiffusion which appears superdiffusive when one only considers time averages.
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In the last decades, Lévy walks [1] have turned out to be
a ubiquitous model for the description of complex transport
phenomena. Examples are chaotic diffusion generated by
nonlinear intermittent iterated maps [2] or low-dimensional
nonintegrable Hamiltonian systems [3], where the latter is
related to transport of tracer particles in turbulent flows [4]
and charged particle motion in magnetized plasmas [5],
diffusion of cold atoms in optical lattices [6], photon
counting statistics for blinking quantum dots [7], pertur-
bation spreading and anomalous energy diffusion in sys-
tems of many interacting particles [8,9], search strategies of
animals [10], travel behavior of humans [11], and target
search of robots [12]. In addition, there exist various
modifications of this basic model [13–17]. The main
advantages of the Lévy walk model are that it is flexible
enough to describe subdiffusion, normal diffusion, super-
diffusion, ballistic transport, and even superballistic dif-
fusion, and that the walker has a well-defined velocity at
almost any instant of time [18–21]. As already stated by
Shlesinger et al. [18,19], Lévy walks are more physical
than the corresponding Lévy flights [22], which consist of
sequences of wait and jump events. In the seminal paper of
Shlesinger et al. [1], Lévy walks were introduced in a
generalized way in which the flight velocities depend on
the flight durations in a nonlinear, deterministic way. One
motivation was to explain the Richardson law of turbulent
dispersion [23,24], i.e., a cubic increase of the mean-
squared displacement (MSD). Besides its possible appli-
cation to turbulent flows [1,25], it has been shown that, e.g.,
integrated Langevin dynamics can be mapped to this
generalized Lévy walk model as it was done for the
diffusion of cold atoms in optical lattices [26,27].
Furthermore, such nonlinear coupled Lévy walks describe
fluid stretching in two-dimensional heterogeneous media
[28,29]. In this Letter, we investigate the weakly non-
ergodic behavior of this generalized Lévy walk model.
Weak nonergodicity [30] or also called weak ergodicity
breaking in this context means that ensemble averages and

time averages do not coincide although the underlying state
or phase space is fully accessible [31]. Such a study is
motivated by experimental techniques [32–35], where
MSDs are either determined by ensemble averages, as in
pulsed field gradient nuclear magnetic resonance (PFG-
NMR) [36], or alternatively via time averages, as, e.g., in
single particle tracking (SPT) experiments [37]. Weak
ergodicity breaking has been found experimentally for
blinking quantum dots [38], diffusion of lipid granules
in living fission yeast cells [39], and diffusion of proteins
on the plasma membrane of living cells [40,41]. Many
theoretical models of anomalous diffusion have been
studied with respect to their ergodic properties [42], among
others, fractional Brownian motion [43], subdiffusive
continuous time random walks [44,45], diffusion on fractal
supports [46], integrated Brownian motion [47], geometric
Brownian motion [48], heterogeneous diffusion processes
[49], scaled Brownian motion [50], and globally correlated
random walks [51]. The weak nonergodicity of Lévy
walks, however, has only been investigated for the standard
model with constant flight velocities [52–54]. In the follow-
ing, we precisely define the generalized Lévy walk model
and study its weakly nonergodic behavior with respect to the
squared displacements. Specifically, we derive analytical
results for the ensemble-averaged and time-averaged squared
displacement and the randomness of the latter as charac-
terized by the ergodicity breaking parameter. Our calcula-
tions are in perfect agreement with numerical simulations,
which we cannot show here due to the lack of space. Our
findings reveal surprising results, which have not been
observed for other models of anomalous diffusion.
The d-dimensional generalized Lévy walk [1] consists of

a sequence of random flights. The durations Ti of the
flights are independent from each other and drawn
from a heavy-tailed probability density function ψðtÞ ¼
γ/t0ð1þ t/t0Þ−γ−1; γ > 0; t0 > 0. The absolute values jVij
of the velocities of the flights are constant during one single
flight and depend on the flight durations in a nonlinear,
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deterministic way, jVij ¼ cTν−1
i ; ν > 0, where the direc-

tions of the flights are isotropically chosen at random. This
model, therefore, is characterized by the two parameters γ
and ν. Several equivalent formulations of the model exist.
Denoting by jXij the distance travelled during one elemen-
tary flight event, one has three defining quantities jXij, jVij,
and Ti. Providing two of them determines the third one,
and, therefore, the compound probability of any pair
defines the model. In addition, for each pair, one can
choose which quantity is given statistically with the other
one following deterministically. In Ref. [1], the statistics
of the distances jXij was prescribed by pðxÞ∼
jxj−γ/ν−1ðjxj → ∞Þ, and the velocity was assigned deter-
ministically by jVij ∝ jXij1−1/ν. For further details of the
generalized Lévy walk including some visualization and its
relation to other space-time coupled models see Ref. [55].
For our analytical treatment, we prescribe the durations Ti
statistically by ψðtÞ with the distances jXij following
deterministically; i.e., we consider the distribution
ψðx; tÞ, where ψðx; tÞddxdt is the probability that a single
flight has duration Ti ∈ ½t; tþ dt�, and the distance trav-
elled with such a flight lies in an infinitesimal volume
around x,

ψðx; tÞ ¼ 1

SdðjxjÞ
δðjxj − ctνÞψðtÞ; ð1Þ

where SdðjxjÞ ¼ f½2πd/2�/Γðd/2Þgjxjd−1 denotes the surface
of the sphere with radius jxj in d Euclidean dimensions,
d ¼ 1; 2;… One also needs the probability Wðx; tÞddx
of travelling a distance inside an infinitesimal volume
around x in time t with a single flight which is longer
than t, which is determined by

Wðx; tÞ ¼ 1

SdðjxjÞ
Z

∞

t
δðjxj − ct0ν−1tÞψðt0Þdt0

¼
Z

∞

1

λdtψðλx; λtÞdλ: ð2Þ

Wðx; tÞ behaves with respect to the first argument like
a probability density and with respect to the second
argument like a cumulative distribution. Hence,
limt→0

R
Wðx; tÞddx ¼ 1. We note that the term λdt of

Eq. (2) is missing in the corresponding expression in
Ref. [1] although we consider the same model.
Therefore, our analytical results for the ensemble-averaged
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FIG. 1. Phase diagram for the ensemble-averaged squared displacement (a), the ensemble average of the time-averaged squared
displacement (b), and the ergodicity breaking parameter (c). Different ranges of validity of the analytical results are separated by thick
black lines in the two-dimensional parameter space. Different kinds of diffusion are color-coded as indicated in the key. The dotted lines
in (c) serve as a guide to the eye for a better comparison with the phase diagram in (b).
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squared displacement deviate from the formulas in Ref. [1]
but are in perfect agreement with numerical simulations
[57]. The propagator, the conditional probability density
pðx; tÞ of finding a Lévy walker at position x at time t
under the initial condition pðx; t ¼ 0Þ ¼ δðxÞ, can be
written in Fourier (k) and Laplace (s) space as [58]

pðk; sÞ ¼ Wðk; sÞ
1 − ψðk; sÞ : ð3Þ

From the propagator, one can easily calculate the ensemble-
averaged squared displacement (EASD)

hΔx2ðτÞiE ¼ h½xðτÞ − xð0Þ�2iE ¼
Z
Rd

x2pðx; τÞddx

¼ L−1
�
−
∂2

∂k2
pðk; sÞj

k¼0
; s; τ

�
; ð4Þ

where L−1 denotes the inverse Laplace transform. In Eq. (4)
and in the following, we use the symbols h� � �iE and h� � �iT
for ensemble and time averages, respectively. One can
calculate the asymptotic behavior of ψðk; sÞ and Wðk; sÞ
for ðk; sÞ → ð0; 0Þ, and by inserting the results in Eq. (4),
one obtains the long-time behavior (τ → ∞) of the EASD.
Our analytical results are illustrated in Fig. 1(a) in the
form of a phase diagram. In this Letter, we will concentrate
on three unexpected or hitherto unknown phenomena
occurring in certain parameter regions. These are (i) the
nonexistence of MSDs, (ii) subdiffusion appearing as super-
diffusion, and (iii) infinitely strong ergodicity breaking.
(i) Nonexistence of the MSD.—Our exact calculations

show that in the parameter region 2ν ≥ γ þ 2 both, the
EASD and the (ensemble averaged) time-averaged squared
displacement (TASD), do not exist because they diverge.
This area includes the parameter pair γ ¼ 1/2, ν ¼ 3/2
[black dot in Figs. 1(a) and 1(b)], where according to
Ref. [1], a τ3 increase of the EASD should be found. That
this is not the case can be understood from the following
argument. The exact EASD is obviously larger than the
contribution coming from all trajectories whose duration T1

of the first flight event is longer than τ, i.e.,

hΔx2ðτÞiE >
Z

∞

τ
½vðt1Þτ�2ψðt1Þdt1

∼
Z

∞

τ
t2ν−γ−31 dt1 ¼ ∞ if 2ν ≥ γ þ 2; ð5Þ

where we used that for such trajectories the squared
displacement after time lag τ is given by ½vðt1Þτ�2 [55].
As a consequence of the divergence of the EASD, the
diffusion exponents, i.e., the exponents of the asymptotic
increase of the EASD, that can be achieved with this model
are strictly smaller than three. Therefore, a cubic increase of
the EASD cannot be found in this model. Note, however,

that for instance for the parameter pair γ ¼ 1/2 and ν ¼ 3/2,
the distribution p3ðD; τÞ of the quantity D3ðτÞ ¼
Δx2ðτÞ/τ3, which we called the distribution of generalized
diffusivities in Ref. [59], converges to a limit distribution
p�ðDÞ ∼D−1.5ðD → ∞Þ with long tails such that its mean
value, i.e., the prefactor of the asymptotic increase of the
EASD, is infinite [55]. If one determines the EASD for this
case numerically from several different finite ensembles,
one obtains power laws with random exponents. The
divergence of the EASD at the line 2ν ¼ γ þ 2 can most
intuitively be attributed to a diverging velocity variance
hv2i of the elementary flight events, which is obtained from
Eq. (5) in the limit τ → 0 by changing variables from t to v.
Below the line 2ν ¼ γ þ 2, where the EASD is finite, the
same phase diagram is found for the corresponding space-
time coupled Lévy flight [60–63] because there, the
character of the diffusion process is only determined by
the statistics of the sequences of the endpoints of the
elementary events, which are identical for both models,
Eq. (1). In contrast, the divergence of the EASD is caused
by the continuous connection of the endpoints, Eq. (5),
and, therefore, cannot be found for Lévy flights, where the
endpoints are connected by one wait and jump event [55].
(ii) Subdiffusion appearing as superdiffusion.—In the

triangular region γ < 1, γ < 2ν < 1, where the EASD
shows a subdiffusive behavior, the TASD reveals a super-
diffusive behavior. To see this, one has to take a closer look
at the TASD defined as

hΔx2ðτÞiT ¼ 1

T − τ

Z
T−τ

0

½xðtþ τÞ − xðtÞ�2dt: ð6Þ

For every finite T, this quantity is a random variable. In
order to quantify this random variable, we first consider the
ensemble average hhΔx2ðτÞiTiE of the TASD (EATASD).
Our starting point for the analytical derivation is the
Green-Kubo formula [52,64,65], hΔx2ðτÞiT ¼
2
R
τ
0 ðτ − tÞCvðtÞdt, where CvðtÞ is the autocorrelation

function of the velocity process defined as time average,
CvðtÞ ¼ 1/ðT − tÞ R T−t

0 vðt0Þvðt0 þ tÞdt0. By taking the
ensemble average of the Green-Kubo formula, one realizes
that the EATASD is essentially determined by the corre-
lation function hvðt0Þvðt0 þ tÞiE, which can be calculated
by using methods introduced by Godrèche and Luck [66],
which were also applied, e.g., in Refs. [54,67]. Eventually,
this knowledge allows us to calculate the asymptotic time
dependence of the EATASD. More details of the derivation
will be published elsewhere [57]. Our analytical results
are again illustrated in the form of a phase diagram [see
Fig. 1(b)]. Interestingly, these results significantly deviate
from the behavior of the EATASD for the space-time
coupled Lévy flight, where a linear time dependence
was found in the whole parameter plane [62,63]. The
reason for this difference is the continuous connection of
the sequence of endpoints of the elementary events in the
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generalized Lévy walk. The different colors in Figs. 1(a)
and 1(b) indicate that the generalized Lévy walk is in
general weakly nonergodic. For γ ≤ 1, the mean flight
duration, i.e., the typical time scale of the process, is
infinite, and, therefore, the measurement time can never be
larger than the typical time scale and so weak nonergodicity
occurs. As already mentioned, especially in the triangular
region γ < 1, γ < 2ν < 1, the EASD shows subdiffusion,
but the EATASD indicates superdiffusion. This means, in a
NMR experiment, one would measure subdiffusion, but in
a SPT experiment, one would measure superdiffusion for
the same system. To our knowledge, such a seemingly
contradictory behavior has not been recognized before in
any model of anomalous diffusion. Details of this phe-
nomenon and its occurrence in other models will be
published elsewhere [55,57]. For γ > 1 and 2ν < γ, how-
ever, the EASD and the EATASD coincide (including the
prefactor, i.e., the diffusion coefficient) as expected from
normal diffusion. Also for γ > 1 and γ < 2ν < γ þ 1, the
EASD and the EATASD coincide with respect to the
diffusion exponent but not with respect to the diffusion
coefficient. The reason is that the squared displacements
½xðtþ τÞ − xðtÞ�2 are nonstationary, but they become
stationary for t → ∞. This means that if one determines
the EASD after a large enough aging time, i.e., the elapsed
time between the beginning of the process and the begin-
ning of the measurement, the EASD and the EATASD
coincide. This phenomenon has also been recognized in
Refs. [52,68] for the special case ν ¼ 1, i.e., the standard
Lévy walk with a constant flight velocity, and was called
ultraweak ergodicity breaking. For γ þ 1 < 2ν < γ þ 2,
we find ballistic diffusion, i.e., a quadratic increase of
the EATASD. Interestingly, the transition to the ballistic
behavior is connected with the divergence of the second
moment of the stationary velocity distribution p�ðvÞ ¼
limt→∞pðv; tÞ, where pðv; tÞ is the probability density of
finding a Lévy walker with absolute value v of velocity v at
time t. This means hv2i ¼ R

v2p�ðvÞdv ¼ ∞ if 2ν ≥ γ þ 1.
For 2ν ≥ γ þ 2, the EATASD diverges. Again, this can
easily be explained by only considering the contributions to
the EATASD coming from all trajectories whose duration
T1 of the first flight is longer than T. A simple calculation
analogous to Eq. (5) shows the divergence.
(iii) Infinitely strong ergodicity breaking.—For the

region 2ν > ðγ/2Þ þ 2, the ergodicity breaking becomes
infinitely strong in the sense that the square of the relative
fluctuation of the TASD captured by the ergodicity break-
ing (EB) parameter diverges. The EB parameter is defined
as variance of the rescaled random variable ξ̂ðτÞ ¼
hΔx2ðτÞiT /hhΔx2ðτÞiTiE [45], i.e.,

EBðτÞ ¼ Varðξ̂ðτÞÞ ¼ hξ̂2ðτÞiE − hξ̂ðτÞi2E; ð7Þ

with hξ̂ðτÞiE ¼ 1 due to normalization. The randomness of
the TASD is fully captured by the distribution of ξ̂ðτÞ,

pðξ; τÞ ¼ hδ½ξ − ξ̂ðτÞ�iE. For an ergodic process, the EB
parameter goes to zero if the measurement time T goes to
infinity, and the distribution pðξ; τÞ becomes a delta
distribution, limT→∞pðξ; τÞ ¼ δðξ − 1Þ. For the analytical
treatment, we use the method introduced in Ref. [47]. There
it was shown by using the Green-Kubo formula that the
random variable ξ̂ðτÞ is equal in distribution to the random
variable ξ� ¼ R

T
0 v2ðtÞdt/hR T

0 v2ðtÞdtiE if ξ̂ðτÞ does not
depend on τ due to the normalization. In full generality,
this equality in distribution holds in the limit for small τ.
Therefore, the calculation of the EB parameter essentially
reduces to the calculation of χðTÞ ≔ h½R T

0 v2ðtÞdt�2iE,
which is much simpler than the original problem because
the velocity process vðtÞ is piecewise constant. χðTÞ can be
calculated by using the methods of Godrèche and Luck
[66]. Our analytical results are again illustrated in the
form of a phase diagram in Fig. 1(c). For γ < 1, the EB
parameter does not depend on τ, but for γ > 1, the EB
parameter depends on τ, and, therefore, there our analytical
results are only valid in the limit τ → 0. For the latter region
of the parameter plane, where the typical time scale of the
process is finite, we observe two essential transitions for
the EB parameter. The first one is the transition from a
vanishing EB parameter (sector D in Fig. 1(c), where the
distribution pðξ; τÞ is given by the delta distribution what is
in agreement with the findings for the special case ν ¼ 1 in
[52–54]) to a finite EB parameter (sector Bγ;ν and Cγ;ν,
where EB is given by a complicated T dependent expres-
sion, which increases with increasing T). This transition
can be understood by a violation of the Khinchin theorem
[69–72], which states that the EB parameter only asymp-
totically goes to zero if the correlation function of the
quantity to be averaged, in our case the squared displace-
ments, asymptotically goes to zero,

Cov(Δx2ðt0; τÞ;Δx2ðt0 þ t; τÞ) !t→∞
0; ð8Þ

where Cov denotes the covariance function, and we used
the abbreviation Δx2ðt0; τÞ ¼ ½xðt0 þ τÞ − xðt0Þ�2. A simple
estimation for the covariance function and the resulting
transition of the EB parameter will be presented elsewhere
[57]. For 2ν ≥ ðγ/2Þ þ 2, the second transition occurs, the
EB parameter diverges. Similar to the divergence of
the MSDs, also this divergence can easily be understood.
The EB parameter is essentially determined by the expect-
ation value h½hΔx2ðτÞiT �2iE. We underestimate this quantity
by only considering contributions from trajectories whose
duration T1 of the first flight is longer than T. A similar
calculation as the one in Eq. (5) gives the above mentioned
condition for the divergence of the EB parameter. For
ν > 1, the corresponding distribution pðξ; τÞ is heavy tailed,
pðξ; τÞ ∼ ξ−1−γ/ð2ν−2Þðξ → ∞Þ. This also explains the diver-
gence of the EB parameter because the second moment of
pðξ; τÞ diverges for 2ν ≥ ðγ/2Þ þ 2. In sector Mγ, the EB
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parameter is given by the variance of the Mittag-Leffler
distribution. Furthermore, it is actually numerically con-
firmed that the distribution pðξ; τÞ in sector Mγ coincides
with the Mittag-Leffler distribution. The formula for the
EB parameter in sector Aγ;ν is very complicated but
only depends on γ and ν. Interestingly, for ν → 1, the EB
parameter goes to zero.
In conclusion, we have seen that the generalized Lévy

walk model exhibits surprising phenomena. Ironically,
although the Lévy walk was constructed in order to avoid
the divergence of the MSD of classical Lévy flights, the
MSDs of the generalized Lévy walk diverge for 2ν ≥ γ þ 2.
For γ < 1 and γ < 2ν < 1, the EASD shows subdiffusion
whereas the TASD indicates superdiffusion. Furthermore,
the EB parameter can diverge although the MSDs are finite.
Interestingly, Fig. 1 shows that for γ > 3 and γ > 4, the EB
parameter can become finite or even infinite, respectively,
for parameters where the MSDs show normal but non-
Gaussian diffusion. The knowledge of these possible
scenarios of weak nonergodicity is crucial for the inter-
pretation of single-particle tracking experiments. Note that
even if one smooths the discontinuities in the velocity
process, all the observed phenomena remain valid.

We thank Michael Shlesinger for exchanging ideas and
his continued interest in our work.
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