
 

Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD
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The energy-energy correlation (EEC) between two detectors in eþe− annihilation was computed
analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO)
starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple,
and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the
EEC in the collinear and back-to-back regions through next-to-leading power, information which should
aid resummation in these regions.
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Introduction.—The energy-energy correlation (EEC) [1]
measures particles detected by two detectors at a fixed
angular separation χ, weighted by the product of the
particles’ energies. The EEC is an infrared-safe characteri-
zation of hadronic energy flow in eþe− annihilation. It has
been used for precision tests of quantum chromodynamics
(QCD) and measurement of the strong coupling constant αs
[2,3]. In perturbative QCD, the EEC is defined by

dΣ
d cos χ

¼
X
i;j

Z
EiEj

Q2
δðn⃗i · n⃗j − cos χÞdσ; ð1Þ

where i and j run over all the final-state massless partons,
which have four-momenta pμ

i and pμ
j (including the

case i ¼ j at χ ¼ 0); Qμ is the total four-momentum of
the eþe− collision and dσ is the differential cross section.
The three-vectors n⃗i;j point along the spatial components
of pi;j. The definition Eq. (1) implies the sum rule

1

σ

Z
1

−1
d cos χ

dΣ
d cos χ

¼ 1; ð2Þ

where σ is the total cross section for eþe− annihilation to
hadrons.
The leading order (LO) QCD prediction for the EEC has

been available since the 1970s [1]:

1

σ0

dΣ
d cos χ

¼ αsðμÞ
2π

CF
3 − 2z

4ð1 − zÞz5
× ½3zð2 − 3zÞ þ 2ð2z2 − 6zþ 3Þ logð1 − zÞ�
þOðα2sÞ; ð3Þ

where σ0 is the Born cross section for eþe− → qq̄,CF is the
quadratic Casimir eigenvalue in the fundamental represen-
tation, and we have introduced z ¼ ð1 − cos χÞ/2. The cross
section is strongly peaked at χ ¼ 0 (z ¼ 0) and χ ¼ π
(z ¼ 1), regions that require resummation of logarithms
due to emission of soft and collinear partons. At inter-
mediate angles, higher-order corrections tend to flatten the
distribution.
The EEC was first computed numerically at next-to-

leading order (NLO) in QCD by several groups in the
1980s and 1990s, originally leading to conflicting results.
Different methods were used to handle soft and collinear
singularities from real radiation: phase-space slicing [4–7],
subtraction methods [6,8–14], or hybrid schemes [6,7,15].
Accurate numerical NLO results are available from the
program EVENT2, based on dipole subtraction [13,14].
Quite recently, the EEC has been computed at NNLO in
QCD using the CoLoRFulNNLO local subtraction
method [16,17].
In perturbation theory, the EEC is singular in both the

collinear (z → 0) andback-to-back regions (z → 1), as can be
seen explicitly from Eq. (3). The leading-logarithmic collin-
ear behavior can be obtained from the “jet calculus” approach
[18,19], in terms of the anomalous dimensionmatrix of twist-
two, spin-three operators [11,19]. Resummation of the EEC
in the back-to-back (Sudakov) region has been performed
at next-to-leading-logarithmic (NLL) and NNLL accuracy
[20–22]. Quite recently, a factorization formula for the EEC
has been derived which permits its resummation to N3LL
[23]. Possible nonperturbative corrections to the EEC have
also been investigated [24].
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In N ¼ 4 super-Yang-Mills (SYM) theory, the EEC has
been computed analytically at NLO in terms of classical
polylogarithms [25], using an approach that bypasses the
need for infrared cancellations in intermediate steps
[26,27]. In the strong-coupling limit and at large Nc, the
EEC in N ¼ 4 SYM theory can be calculated using
AdS/CFT duality [28].
Despite all of this progress, the analytic computation of

the EEC at NLO in QCD has remained an open problem,
whose solution is desirable for several reasons. First, the
analytical results can settle any remaining discrepancies
between different numerical methods, and provide a bench-
mark for future numerical evaluations. Second, the ana-
lytical results allow extraction of the Oðα2sÞ asymptotic
behavior in the collinear and back-to-back regions, not just
at leading power, but any desired power. Knowledge of the
subleading power corrections can be very helpful for
improving the understanding of resummation at subleading
power [29–38]. Third, no other event-shape variable has
been computed analytically at NLO. Calculationally, the
EEC appears to be the simplest such observable. Knowing
it analytically at NLO marks an important step in the
perturbative understanding of event-shape observables, and
may pave the way for an analytic computation at NNLO.
Recently, progress has been made toward computing the
EEC at NLO by linearizing the measurement function [39].
In this Letter, we present the first fully analytic result for the
EEC in QCD at NLO.
The calculation.—At LO, calculation of the EEC is

straightforward, because only finite phase-space integrals
need to be evaluated. At NLO, the renormalized virtual
corrections contain explicit infrared (IR) poles, but no
singularities from the boundary of phase space. We use the
analytical one-loop amplitudes [40,41], and perform
the phase-space integration directly. The real radiative
corrections represent the most complicated part of this
calculation, because the phase-space integrals contain
unresolved soft and collinear IR divergences. We apply
reverse unitarity [42,43] to write on-shell delta functions
as differences of Feynman propagators with opposite signs
for iε, which allows the use of integration-by-parts (IBP)
equations [44,45] for multiloop integrals. The EEC meas-
urement function can be written in the same way,

δ(MijðχÞ) ¼
1

2πi

�
1

MijðχÞ − iε
−

1

MijðχÞ þ iε

�
; ð4Þ

where MijðχÞ¼ðpi ·Qpj ·QÞðn⃗i ·n⃗j−cosχÞ¼ðpi ·Qpj ·QÞ×
ð1−cosχÞ−pi ·pj. While the application of reverse unitarity
to phase-space integrals is now quite standard, Eq. (4) is
special in the sense that MijðχÞ is a nonlinear function of
Lorentz dot products. In addition to the usual IBP equa-
tions, an extra equation,

½ð1 − cos χÞðpi ·Qpj ·QÞ − pi · pj�½δ(MijðχÞ)�k
¼ ½δ(MijðχÞ)�k−1; ð5Þ

for k ¼ 1; 2;…, with ½δ(MijðχÞ)�0 ≡ 0, has to be added in
order to fully reduce the phase-space integrals to master
integrals (MIs).
In our calculation, we use QGRAF [46] to generate the

squared amplitudes for the LO and real NLO terms. We set
all quark masses to zero, and ignore contributions from the
top quark, as well as the (tiny) purely axial-vector con-
tributions in the case of eþe− annihilation via the Z boson.
The color and Dirac algebra is evaluated using FORM [47].
The resulting tree-level matrix elements agree fully with
Ref. [40]. The squared matrix elements for the NLO real
corrections, ignoring the EEC measurement function, can
be divided into three integrand topologies, each consisting
of nine Feynman propagators (one in the numerator). Since
there are four partons in the real NLO final state, there are
ð4
2
Þ ¼ 6 different measured pairs to sum over for the EEC.

Multiplying the 3 inclusive integrand topologies by the
6 pairs of measurement delta functions gives rise to 18
separate integral topologies. We use LITERED [48,49] to
generate the standard IBP equations for these integral
families, and then add the additional integral relation from
Eq. (5) manually. We then export the resulting IBP relations
to FIRE [50,51] to perform the integral reduction, which
leads to a total of 40 independent MIs.
We solve for the MIs by the method of differential

equations (DEs) [52,53], and convert the DE systems into
a canonical form [54]. Some of the DE systems can be
converted to canonical form using the original variable z;
for others, an algebraic change of variable to x ¼ ffiffiffi

z
p

or
y ¼ i

ffiffiffi
z

p
/

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
is required. After identifying the appro-

priate variable for each integral family, the conversion to a
canonical basis can be automated by the Mathematica
package FUCHSIA [55]. The resulting symbol alphabet,
characterizing the arguments of the polylogarithms, is
f1 − x; y; 1 − y; 1þ yg. Note that z, 1 − z, x and 1þ x also
appear, but are not multiplicatively independent, since
1/ð1 − y2Þ ¼ 1 − x2 ¼ 1 − z, etc., so we do not count them
as separate symbol letters. This alphabet implies that the
solution to the DEs can bewritten fully in terms of harmonic
polylogarithms (HPLs) [56], which can be manipulated
conveniently using theMathematica packageHPL [57]. Our
final NLO result contains at most weight 3 HPLs, which can
all be reduced to classical polylogarithms.
The most intricate part of the calculation is the deter-

mination of the constants of integration for the DEs, which
requires combining several different constraints. First, we
require that the leading power expansion zα of each MI in
the collinear limit z → 0 has the correct power α, which can
be predicted by simple power counting. We find that all the
MIs in our problem have at most a z−1 pole. (Some have z0

or z1 as their leading behavior.) Requiring the absence of
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z−2 or worse poles strongly constrains the boundary
constants. The second constraint is the z → −∞ limit:
Before converting to the canonical basis, MIs that are pure
functions of uniform transcendental weight should vanish
in this limit. The third constraint comes from performing
a weighted integration over z, which allows the removal
of the measurement constraint, according to the integral
relation

Z
dPSð4Þẑnijð1 − ẑijÞmIðfpgÞ

¼
Z

1

0

dzznð1 − zÞm
Z

dPSð4ÞIðfpgÞ

× 2pi ·Qpj ·Q δ(MijðχÞ): ð6Þ

Here dPSð4Þ is the four-particle Lorentz-invariant phase-
space measure inD dimensions, ẑij ¼ Q2pi · pjð2pi ·Qpj·
QÞ−1, and IðfpgÞ denotes a MI integrand. We choose the
integers n and m to be sufficiently positive that the
particular integration over z converges, and n ≤ 1, m ≤ 1
to keep the IBP reduction tractable. The integral on the left-
hand side can be reduced to known inclusive four-particle
phase-space integrals [58], if we multiply the integrand on
both sides by ðpi ·Qpj ·QÞnþm. The last constraint we
apply is to demand that the full NLO real corrections, after
substituting in the results for the MIs, have at most a z−1

pole. This gives extra constraints, beyond the constraints
applied to the individual MIs. A similar method has been
applied to fix constants of integration for DEs for auxiliary
EEC MIs [39].
The result.—After combining the real and virtual cor-

rections, and adding the counterterm to renormalize αs, we
obtain our final result for the EEC at NLO. We write the
differential distribution as

1

σ0

dΣ
d cos χ

¼ αsðμÞ
2π

AðzÞ þ
�
αsðμÞ
2π

�
2

×

�
β0 log

μ

Q
AðzÞ þ BðzÞ

�
þOðα3sÞ; ð7Þ

where the LO coefficient AðzÞ has already been given in
Eq. (3), and β0 ¼ 11CA/3 − 4NfTf/3. For QCD with Nf

flavors of quarks, CA ¼ Nc ¼ 3, CF ¼ ðN2
c − 1Þ/ð2NcÞ ¼

4/3, and Tf ¼ 1/2. The NLO coefficient BðzÞ can be further
decomposed into different color structures,

B ¼ C2
FBlc þ CFðCA − 2CFÞBnlc þ CFNfTfBNf

: ð8Þ

We have calculated each coefficient in the color
decomposition analytically. The leading-color correction
Blc reads,

Blc ¼ þ 122400z7 − 244800z6 þ 157060z5 − 31000z4 þ 2064z3 þ 72305z2 − 143577zþ 63298

1440ð1 − zÞz4

−
−244800z9 þ 673200z8 − 667280z7 þ 283140z6 − 48122z5 þ 2716z4 − 6201z3 þ 11309z2 − 9329zþ 3007

720ð1 − zÞz5 gð1Þ1

−
244800z8 − 550800z7 þ 422480z6 − 126900z5 þ 13052z4 − 336z3 þ 17261z2 − 38295zþ 19938

720ð1 − zÞz4 gð1Þ2

þ 4z7 þ 10z6 − 17z5 þ 25z4 − 96z3 þ 296z2 − 211zþ 87

24ð1 − zÞz5 gð2Þ1

þ −40800z8 þ 61200z7 − 28480z6 þ 4040z5 − 320z4 − 160z3 þ 1126z2 − 4726zþ 3323

120z5
gð2Þ2

−
1 − 11z
48z7/2

gð2Þ3 −
120z6 þ 60z5 þ 160z4 − 2246z3 þ 8812z2 − 10159zþ 4193

120ð1 − zÞz5 gð2Þ4

− 2ð85z4 − 170z3 þ 116z2 − 31zþ 3Þgð3Þ1 þ −4z3 þ 18z2 − 21zþ 5

6ð1 − zÞz5 gð3Þ2 þ z2 þ 1

12ð1 − zÞ g
ð3Þ
3 ; ð9Þ

where the gðnÞm are pure functions of uniform transcendental weight n. Their explicit definitions are
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gð1Þ1 ¼ logð1 − zÞ; gð1Þ2 ¼ logðzÞ;
gð2Þ1 ¼ 2½Li2ðzÞ þ ζ2� þ log2ð1 − zÞ;
gð2Þ2 ¼ Li2ð1 − zÞ − Li2ðzÞ;

gð2Þ3 ¼ −2Li2ð−
ffiffiffi
z

p Þ þ 2Li2ð
ffiffiffi
z

p Þ þ log

�
1 −

ffiffiffi
z

p
1þ ffiffiffi

z
p

�
logðzÞ;

gð2Þ4 ¼ ζ2;

gð3Þ1 ¼ −6
�
Li3

�
−

z
1 − z

�
− ζ3

�

− log

�
z

1 − z

�
½2ðLi2ðzÞ þ ζ2Þ þ log2ð1 − zÞ�;

gð3Þ2 ¼ −12
�
Li3ðzÞ þ Li3

�
−

z
1 − z

��

þ 6Li2ðzÞ logð1 − zÞ þ log3ð1 − zÞ;
gð3Þ3 ¼ 6 logð1 − zÞ½Li2ðzÞ − ζ2� − 12Li3ðzÞ þ log3ð1 − zÞ:

ð10Þ

Note thatBlc contains explicit dependence on
ffiffiffi
z

p
through

the function gð2Þ3 and its coefficient, whose product is
even under

ffiffiffi
z

p
→ −

ffiffiffi
z

p
. This property also holds in

N ¼ 4 SYM theory [25]. To describe Blc, we need just
two weight 1, four weight 2, and three weight 3 transcen-
dental functions. To express Bnlc and BNf

requires two more
weight 3 transcendental functions. The NLOEEC inN ¼ 4

SYM theory [25], after some rearrangement, can be
expressed in terms of a subset of the transcendental functions
needed for QCD. Individual virtual and real contributions
contain HPLs with argument y ¼ i

ffiffiffi
z

p
/

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
. However,

they cancel out in the final physical result. The explicit
expressions for Bnlc and BNf

can be found in the
Supplemental Material [59] for this Letter. In an ancillary
file, we provide computer-readable expressions for all these
functions, as well as their behavior in various limits.
We have performed a number of checks on the results.

First, the individual virtual and real corrections are IR

divergent, but the divergent terms cancel after summing
virtual and real, as required for any IR-safe observable.
Second, in Fig. 1 we compare our analytical results with
numerical predictions from EVENT2, which is based on the
dipole subtraction method [13,14]. We find excellent agree-
ment with EVENT2 over a large range; the apparent discrep-
ancy in the rightmost bin is mainly due to the finite binwidth
used inEVENT2. The z → 0 and z → 1 limits of the analytical
results are in perfect agreement with those predicted
respectively by jet calculus [11,19] and soft-gluon resum-
mation [22,23], as we discuss in the next section.
Discussion.—It is interesting to study the end-point

asymptotic limits of the EEC, which provide useful
information for resummation and for constructing more
accurate parton showers. Expanding our results in the
z → 0 limit gives

BðzÞ ¼ CF

�
1

z

�
logðzÞ

�
−
107CA

120
þ 25CF

32
þ 53NfTf

240

�
þ CA

�
−
25ζ2
12

þ ζ3
2
þ 17683

2700

�

þCF

�
43ζ2
12

− ζ3 −
8263

1728

�
−
4913NfTf

3600

�
þ logðzÞ

�
CA

�
33ζ2
2

−
703439

25200

�

þCF

�
42109

1200
− 21ζ2

�
þ NfTf

�
86501

12600
− 4ζ2

��
þ CA

�
213ζ2
5

−
101ζ3
2

−
26986007

5292000

�

þ CF

�
−
1541ζ2
30

þ 65ζ3 þ
18563

2700

�
þNfTf

�
−
46ζ2
3

þ 12ζ3 þ
2987627

330750

��
þOðzÞ; ð11Þ

where we have expanded throughOðz0Þ. Note that individual terms in Eq. (9) are far more singular as z → 0 than is the total
Eq. (11). The EEC in the z → 0 limit is dominated by collinear splitting. The leading-logarithmic term logðzÞ/z has been

FIG. 1. Analytical results for sin2ðχÞB are compared with
numerical results from EVENT2 [13,14]. The EVENT2 prediction
is obtained after sampling over 1010 points, with the internal
CUTOFF set to 10−14. Error bars represent EVENT2 statistical
uncertainties.
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predicted [11,19] using jet calculus [18,19]. The result is expressed as a product of two 2 × 2 (quark-gluon) anomalous
dimension matrices for twist 2, spin 3 operators, plus a contribution due to the running coupling. It agrees fully with the
coefficient of logðzÞ/z in Eq. (11).
In the back-to-back limit, z → 1, we find that the expansion of BðzÞ to next-to-leading power reads

BðzÞ ¼ CF

�
1

1 − z

�
þ 1

2
CFlog3ð1 − zÞþlog2ð1 − zÞ

�
11CA

12
þ 9CF

4
−
NfTf

3

�

þ logð1 − zÞ
�
CA

�
ζ2
2
−
35

72

�
þ CF

�
ζ2 þ

17

4

�
þNfTf

18

�
þ CA

�
11ζ2
4

þ 3ζ3
2

−
35

16

�

þCF

�
3ζ2 − ζ3 þ

45

16

�
þ NfTf

�
3

4
− ζ2

��
þ
�
CA

2
þ CF

�
log3ð1 − zÞ

þlog2ð1 − zÞ
�
27CA

8
þ 13CF

2
−
NfTf

2

�
þ logð1 − zÞ

�
CA

�
22ζ2 −

2011

72

�

þCFð47 − 19ζ2Þ þ NfTf

�
361

36
− 4ζ2

��
þ CA

�
6347ζ2
80

− 21ζ2 logð2Þ −
137ζ3
4

−
3305

72

�

þ CF

�
−
1727ζ2
20

þ 42ζ2 logð2Þ þ
121ζ3
2

þ 3437

96

�
þNfTf

�
−
1747ζ2
120

þ 12ζ3 þ
2099

144

��
þOð1 − zÞ: ð12Þ

All the terms enhanced by ð1 − zÞ−1 were predicted
previously [22], in full agreement with Eq. (12). The
next-to-leading power terms are new. They will provide
useful information for resumming large Sudakov loga-
rithms beyond leading power [29–38]. We note the appear-
ance of ζ2 logð2Þ in the constant term at next-to-leading
power, which originates solely from Bnlc.
Summary.—We have presented the analytical result for

the EEC in QCD at NLO. Our calculation was enabled by
using the IBP equations in a novel way. The final result turns
out to be rather simple; only 11 transcendental functions are
required to describe theQCD results, and these functions are
no more complicated than the ones in the N ¼ 4 SYM
results [25]. In contrast, the polynomial prefactors are of
considerably higher degree for QCD. We have checked our
results against EVENT2 numerically and found full agree-
ment. We have also expanded the EEC to next-to-leading
power in the collinear and back-to-back limits. The sim-
plicity of the full NLO result provides encouragement for
trying to compute the EEC at NNLO analytically. It will also
be interesting to apply our method to other event-shape
variables, such as the C parameter (which does appear to
require elliptic functions, even at LO) [40].
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