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Near the horizon, the obvious symmetries of a black hole spacetime—the horizon-preserving diffeo-
morphisms—are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs
algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented
symmetry and show that it is strong enough to determine the black hole entropy in any dimension.
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Introduction.—One of the most striking features of black
hole thermodynamics is the universality of the Bekenstein-
Hawking entropy. Black holes, black strings, black rings,
black branes, and black saturns, in any dimension, with any
charges and spins, with horizons arbitrarily distorted by
external fields, all have the entropies

SBH ¼ Ahor

4Gℏ
; ð1Þ

where Ahor is the horizon area. Changing the action can
change this formula, but only by another universal term. To
deepen the mystery, many different models of the quantum
black hole, from string theory to loop quantum gravity to
induced gravity, all yield the same entropy, even though they
seem to count very different microstates [1]. Even in the
elegant analysis of Bogomol’nyi-Prasad-Sommerfield black
holes in string theory [2], the entropy and the area are
determined separately in terms of a set of charges, and the
relation (1) requires a new computation for each choice of
charges. It seems clear that some underlying structure is
missing.
A first guess for this deeper structure is that the relevant

degrees of freedom live on the horizon [3]. This is not
enough, however: while it may explain the proportionality
of entropy to area, there is no obvious reason for the
coefficient of 1/4 to be universal. A more elaborate idea,
first suggested (I believe) in Ref. [4], is that the entropy is
governed by a horizon symmetry. Two-dimensional con-
formal symmetry, in particular, has similar universal
properties—the Cardy formula fixes the asymptotic behav-
ior of the density of states in terms of a few parameters,
independent of the details of the theory [5]—and the
possibility of a connection is appealing.
This possibility was first confirmed for the (2þ 1)-

dimensional Bañados-Teitelboim-Zanelli (BTZ) black hole
in 1998 [6,7], and attempts to extend it to higher dimensions
soon followed [8,9]. These efforts have had significant
success; see Ref. [10] for a review. However, they are
plagued by serious limitations: (i) The symmetries are

normally imposed either at infinity or at a timelike “stretched
horizon” (although with rare exceptions [11]). Physics at
infinity is very powerful, especially for asymptotically anti–
de Sitter spaces, but the symmetries by themselves cannot
distinguish a black hole from, for instance, a star. The
stretched horizon more directly captures the properties of
the black hole, but while the entropy has a well-defined limit
at the horizon, other parameters typically blow up [12,13]
(again with occasional exceptions [14]), and different def-
initions of the stretched horizon can lead to different
entropies [15,16]. (ii) The approach fails in what should
be the simplest case, two-dimensional dilaton gravity. There
are ad hoc fixes—lifting the theory to three dimensions [17]
or artificially introducing an integral over time [18]—but
none are convincing. (iii) In higher dimensions, the relevant
symmetries are those of the “r-t plane” picked out by the
horizon. To obtain a well-behaved symmetry algebra, how-
ever, one must introduce extra ad hoc angular dependence of
the parameters that has no clear physical justification.
Here, I show how to fix these problems. (An expanded

version of this Letter will appear in Ref. [19].) The basic
mistake, I argue, has been to try to force the horizon
symmetry into the form of a two-dimensional conformal
symmetry. This was an understandable choice: until
recently, such a symmetry was the only one known to
be powerful enough to control the density of states. It has
now been shown, however, that a three-dimensional Bondi-
Metzner-Sachs (BMS3) symmetry has similar universal
properties, including a generalized Cardy formula for the
entropy [20].
Using covariant phase space methods [21,22], I show that

the symmetry generators can be expressed as integrals along
the horizon [23],with no “stretching.” I then demonstrate that
a BMS3 symmetry appears in a natural way on the horizon,
circumventing the problems of previous efforts, and that it
gives the correct counting of states.
Quantum states from classical symmetries.—Before

proceeding, it is worthwhile to understand how a classical
symmetry can control the number of quantum states. The
basic assumption is that the symmetry, perhaps deformed,
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is realized in the quantum theory. As we shall see below, the
classical symmetry of the horizon of a dilaton black hole is
a BMS3 symmetry, with generators Ln and Mn satisfying a
Poisson algebra

ifLm; Lng ¼ ðm − nÞLmþn; ifMm;Mng ¼ 0;

ifLm;Mng ¼ ðm − nÞMmþn þ cLMmðm2 − 1Þδmþn;0; ð2Þ
where cLM is a classical central charge. With the
usual substitutions f•; •g → ð1/iℏÞ½•; •�, ð1/ℏÞL → L̂, and
ð1/ℏÞM → M̂, ð1/ℏÞc → ĉ, we obtain a quantum operator
algebra

½L̂m; L̂n� ¼ ðm − nÞL̂mþn; ½M̂m; M̂n� ¼ 0;

½L̂m; M̂n� ¼ ðm − nÞM̂mþn þ ĉLMmðm2 − 1Þδmþn;0: ð3Þ

The factors of ℏ in L̂ and M̂ ensure that the operators
are dimensionless symmetry generators. Classical values
of the zero modes L0 and M0 now become eigenvalues
hL ¼ L0/ℏ, hM ¼ M0/ℏ of the corresponding operators.
The true quantum symmetry may be a deformation of
Eq. (3)—other central terms may appear, for example—but
any differences will be suppressed by factors of ℏ.
Now, it has been known since 1986 that a two-

dimensional conformal symmetry determines the asymp-
totic density of states [5]. (For a careful derivation, see
Ref. [24].) For the simplest case of free bosons and
fermions, the result is just the Hardy-Ramanujan formula
from number theory for partitions of an integer [25]. I know
of no elementary explanation for the general case, but,
roughly, the exact symmetry is strong enough to prevent
any exponential growth of states at all; growth occurs only
because of the anomalous symmetry breaking characterized
by the central charge c.
The symmetry (3) is not quite a conformal symmetry,

but it is a group contraction, and as Bagchi et al. have
shown [20], it has a version of the Cardy formula for the
density of states,

S ∼ 2πhL

ffiffiffiffiffiffiffiffiffi
ĉLM
2hM

s
¼ 2π

ℏ
L0

ffiffiffiffiffiffiffiffiffi
cLM
2M0

r
; ð4Þ

where L0, M0, and cLM in the last equality are the classical
values. As might have been expected, the entropy is a
classical “phase space volume” divided by ℏ.
Dilaton gravity with null dyads.—We now apply this

argument to the black hole. The horizon Δ of a stationary
black hole in any dimension has a preferred null direction,
determined by the geodesics that generate the horizon.
A neighborhood of the horizon also has a preferred spatial
coordinate, the proper distance from Δ. Together, these
define a two-dimensional r-t plane, in which most of the
interesting physics is expected to take place, since trans-
verse derivatives are redshifted away near the horizon.

Hawking radiation, for instance, can be obtained by
dimensional reduction to this plane [26].
Upon dimensional reduction and a field redefinition, the

Einstein-Hilbert action becomes [27]

I ¼ 1

16πG

Z
M
ðφRþ V½φ�Þϵ; ð5Þ

where ϵ is the volume two-form. The scalar field φ,
the dilaton, is the remnant of the transverse geometry,
essentially the transverse area. The resulting equations of
motion are

Eab ¼ ∇a∇bφ − gab□φþ 1

2
gabV ¼ 0; ð6aÞ

Rþ dV
dφ

¼ 0; ð6bÞ

where the second equation is not independent but follows
from the divergence of the first.
Let us choose a null dyad ðla; naÞ, with l2 ¼ n2 ¼ 0 and

l · n ¼ −1. For notational convenience, define D ¼ la∇a,
D̄ ¼ na∇a. The metric and the Levi-Civita tensor are then

gab ¼ −ðlanb þ nalbÞ; ϵab ¼ ðlanb − nalbÞ: ð7Þ

The dyad is determined only up to a local Lorentz trans-
formation, la → eλla, na → e−λna. We can partially fix
this freedom by choosing na to have vanishing acceleration,
nb∇bna ¼ 0; the remaining transformations are those for
which na∇aλ ¼ 0. With this choice,

∇alb ¼ −κnalb; ∇anb ¼ κnanb; ð8Þ

where κ will be the surface gravity at a horizon. Under
variation of the dyad, Eq. (8) is preserved if

D̄ðlcδncÞ ¼ ðDþ κÞðncδncÞ;
δκ ¼ −DðncδlcÞ þ κlcδnc þ D̄ðlcδlcÞ: ð9Þ

By considering the commutator ½∇a;∇b�lb, one may
easily show that

R ¼ 2D̄κ: ð10Þ

To integrate by parts along the horizon, I will also
frequently use the identity

df ¼ −Dfna − D̄fla for any function f; ð11Þ

where I am treating na and la as one-forms.
The covariant canonical formalism and symplectic

structure.—The idea underlying the covariant canonical
formalism is that, for a theory with a unique time evolution,
the phase space, viewed as the space of initial data, can
be identified with the space of classical solutions [28,29].
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This observation, which can be traced back to Lagrange
(see Ref. [28]), means that we can formulate all the usual
ingredients of a Hamiltonian approach without ever having
to break general covariance by choosing a time slicing.
Consider a theory in an n-dimensional spacetime with

fields ΦA (for us, φ and g) and a Lagrangian density L½Φ�,
which we view as an n-form. Under a general variation of
the fields,

δL ¼ EAδΦA þ dΘ½Φ; δΦ�; ð12Þ
where the equations of motion are EA ¼ 0, and the last
“boundary” term comes from integration by parts. We
normally ignore the boundary term, but in the covariant
canonical formalism, it plays an essential role. The sym-
plectic current ω is defined by a second variation,

ω½Φ; δ1Φ; δ2Φ� ¼ δ1Θ½Φ; δ2Φ� − δ2Θ½Φ; δ1Φ�; ð13Þ
and the symplectic form is

Ω½Φ;δ1Φ;δ2Φ�¼
Z
Σ
ω½Φ;δ1Φ;δ2Φ�¼

Z
Σ
ωABδ1ΦA∧δ2ΦB;

ð14Þ

where Σ is a Cauchy surface.
In keeping with the covariant phase space philosophy,

Ω½Φ; δ1Φ; δ2Φ� depends on a classical solution Φ, which
fixes a point in phase space, and is a two-form on the
phase space. The variations δΦ are thus tangent vectors to
the space of classical solutions, that is, solutions of the
linearized equations of motion. For a field theory in flat
spacetime, it is easy to check that when Σ is a surface of
constant time, Eq. (14) is the ordinary symplectic form.
The integral (14) may depend on the choice of Cauchy
surface, but only weakly: the symplectic current is a closed
form, so integrals over two Cauchy surfaces Σ1 and Σ2

differ only by boundary terms that may arise if ∂Σ1 ≠ ∂Σ2.
As in ordinary mechanics, the symplectic form deter-

mines Poisson brackets and Hamiltonians. In particular,
given a family of transformations δτΦA labeled by a
parameter τ, the Hamiltonian H½τ� is determined by the
condition

δH½τ� ¼ Ω½δΦ; δτΦ� ð15Þ
for an arbitrary variation δΦ. This is just a disguised form
of Hamilton’s equations of motion,

δτΦA ¼ ðω−1ÞAB δH½τ�
δΦB : ð16Þ

The Poisson bracket of two Hamiltonians is then

fH½τ1�; H½τ2�g ¼ δτ1H½τ2� ¼ Ω½δτ1Φ; δτ2Φ�: ð17Þ
Specializing to dilaton gravity and using Eq. (10), it is

straightforward to show that

Ω½ðφ;gÞ;δ1ðφ;gÞ;δ2ðφ;gÞ�

¼ 1

8πG

Z
Σ
½δ1φδ2ðκnaÞþδ1ðD̄φÞδ2la�− ð1↔ 2Þ; ð18Þ

again treating la and na as one-forms on the (one-
dimensional) Cauchy surface Σ.
Horizons and boundary conditions.—For dilaton models

obtained by dimensional reduction, φ is essentially the
transverse area, and the natural definition of a local
“nonexpanding horizon” Δ—a null surface with vanishing
expansion [30]—is that Dφ ¼ 0 on Δ. This correctly
determines the horizon from the purely two-dimensional
viewpoint as well: on shell, Δ is a Killing horizon [27] and
the boundary of a trapped region [31]. Exact black hole
solutions in two dimensions have such horizons, with
essentially the same Penrose diagrams as those in higher
dimensions [32].
To study horizon symmetries in the covariant phase

space formalism, we incorporate Δ as part of our Cauchy
surface. Focus on the exterior region of an asymptotically
flat black hole, with the Penrose diagram of Fig. 1, and take
Σ to be the union of the future horizon Δ and future null
infinity ℐþ, with ends at the bifurcation point B and
spacelike infinity. The details of ℐþ are unimportant;
the analysis will still hold for asymptotically de Sitter or
anti–de Sitter space.
Let us define≜ tomean “equal onΔ,”where the horizonΔ

is now defined by the requirement that Dφ ≜ 0. We
shall impose three “boundary conditions” at this horizon:
1. DR ≜ 0. This is a requirement of stationary geometry
on Δ. In higher dimensions, this condition follows auto-
matically from the Raychaudhuri equation; here, it must be
imposed by hand, although it holds identically on shell.
2. The conformal class of the metric is fixed on the
horizon—that is, only variations of the form δgab ≜
δωgab are allowed—in keeping with the physical picture
that conformal fluctuations are the relevant degrees of
freedom. This implies that laδla ≜ 0 and naδna ≜ 0.
3. The integration measure na is fixed on Δ. In view of

condition 2, the additional requirement is that laδna ≜ 0.
This is really a gauge-fixing condition, which can always be

FIG. 1. Penrose diagram for the exterior of a black hole.
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achieved by a suitable local Lorentz transformation. I believe
conditions 2 and 3 can be relaxed, at the cost of some
complications [19].
These conditions simplify the symplectic form (18)

considerably. For the portion lying on the horizon,

ΩΔ½ðφ; gÞ; δ1ðφ; gÞ; δ2ðφ; gÞ�

¼ 1

8πG

Z
Δ
½δ1φδ2κ − δ1φδ2κ�na; ð19Þ

a version of the known fact that the area φ and the surface
gravity κ are canonically conjugate [33]. One subtlety
remains, though. A variation of φ will typically “move the
horizon,” changing the locus of points Dφ ¼ 0. This will
not matter for the symplectic form, sinceΩΔ is independent
of the integration contour [34]. For the variation of an
object such as a Hamiltonian defined as an integral over Δ,
however, we shall have to take this change into account.
The diffeomorphism needed to “move the horizon back” is
determined by the condition that

ðδþ δζÞðDφÞ ¼ δðDφÞ þ ζa∇aðDφÞ ≜ 0

⇒ ζa ¼ ζ̄na ¼ −
Dδφ

D̄Dφ
na; ð20Þ

and hence

δ

Z
Δ
Hna ¼

Z
Δ
ðδHþ ζa∇aHÞna: ð21Þ

Symmetries and approximate symmetries.—The action
(5) is, of course, invariant under diffeomorphisms, including
horizon “supertranslations” [35] generated by vector fields
ξa ¼ ξla. Such diffeomorphisms fail to respect condition 3
of the preceding section, however, since laδξna ≠ 0. This is
easily cured, by supplementing each diffeomorphism with a
local Lorentz transformation δla ¼ ðδλÞla, δna ¼ −ðδλÞna
with δλ ¼ Dξ. By Eq. (9), this requires that D̄ξ ≜ 0. We
thus have an invariance

δξla ¼ 0; δξna ¼ −ðDþ κÞξna;
δξgab ¼ −ðDþ κÞξgab;
δξφ ¼ ξDφ; with D̄ξ ≜ 0: ð22Þ

As noted some time ago [23], the action also has an
approximate invariance under certain shifts of the dilaton
near a black hole horizon, with an approximation that can
be made arbitrarily good by restricting the transformation
to a small enough neighborhood of Δ. Consider a variation

δ̂ηφ ¼ ∇aðηlaÞ ¼ ðDþ κÞη; with D̄η ≜ 0 ð23Þ

(where the hat on δ̂ distinguishes it from a diffeomor-
phism). The action transforms as

δ̂ηI ¼
1

16πG

Z
M

�
Rþ dV

dφ

�
δ̂ηφϵ

¼ −
1

16πG

Z
M
η

�
DRþ d2V

dφ2
Dφ

�
ϵ: ð24Þ

But Dφ and DR both vanish at the horizon, so the variation
(24) can be made as small as one wishes by choosing η to
fall off fast enough away from Δ.
There is one remaining subtlety. While the transforma-

tion (23) does not directly act on the curvature, the change
of φ moves the horizon, and DR may no longer vanish at
the new location. The displacement of the horizon is
characterized by the diffeomorphism (20) and can be
compensated for with a “small” (order Dφ) Weyl trans-

formation of the metric to restore the condition DR ≜ 0. It
may be shown that, on shell, the required transformation is

δ̂ηgab¼ δ̂ωηgab; with δ̂ωη¼−
1

2D̄Dφ

d2V
dφ2

Dφ η: ð25Þ

Like (23), the Weyl transformation (25) changes the action
only by terms proportional to ηDφ, which can be made
arbitrarily small by choosing η to fall off fast enough away
from Δ.
We should also check the variation of the equations of

motion (6a) and (6b). These are, of course, preserved by
diffeomorphisms, so we need only consider the trans-
formations (23) and (25). Since we are assuming that η
falls off rapidly away from the horizon, it is enough to
check the variations at Δ. With a straightforward compu-
tation, we find that most of the equations of motion are
preserved: up to terms that are themselves proportional to
the equations of motion,

gabδ̂ηEab ≜ 2ðDþ κÞD̄δ̂ηφþ dV
dφ

δ̂ηφ ≜ 0; ð26aÞ

nanbδ̂ηEab ≜ D̄2δ̂ηφ − D̄φD̄δ̂ηω ≜ 0; ð26bÞ

δ̂η

�
Rþ dV

dφ

�
≜ δ̂ηRþ d2V

dφ2
δ̂ηφ ≜ 0: ð26cÞ

The remaining variation, lalbδ̂ηEab, is not zero. However,
this is actually a familiar occurrence in conformal field
theory. If we set Eab ¼ 8πGTab, we find that

lalbδ̂ηTab ≜ 1

8πG
ðD − κÞDðDþ κÞη; ð27Þ

which is essentially the usual anomaly for a conformal field
theory with a central charge proportional to 1/G [36]. This
is our first indication that the symmetry is anomalous.
Canonical generators and their algebra.—At the hori-

zon, the symmetries of the preceding section obey an
algebra
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½δξ1 ; δξ2 �f ≜ δξ12f; with ξ12 ¼ −ðξ1Dξ2 − ξ2Dξ1Þ;
½δ̂η1 ; δ̂η2 �f ≜ 0;

½δξ1 ; δ̂η2 �f ≜ δ̂η12f; with η12 ¼ −ðξ1Dη2 − η2Dξ1Þ:
ð28Þ

This may be recognized as a BMS3 algebra or, equivalently,
a Galilean conformal algebra [37]. We must now ask
whether these transformations can be realized canonically
as in (15), that is, whether there exist generators that satisfy

δL½ξ� ¼ 1

8πG

Z
Δ
½δφδξκ − δξφδκ�na

¼ 1

8πG

Z
Δ
½δφDðDþ κÞξ − ξDφδκ�na; ð29aÞ

δM½η� ¼ 1

8πG

Z
Δ
½δφδ̂ηκ − δ̂ηφδκ�na

¼ 1

8πG

Z
Δ

�
−δκðDþ κÞηþ 1

2

Dδφ

D̄Dφ
η
d2V
dφ2

Dφ

�
;

ð29bÞ
where variations of the generators must include the horizon
displacement described by (21), and where the covariant
phase space formalism allows us to impose the equations of
motion after variation.
It is not at all clear that such generators exist: there is no

obvious reason that the near-horizon symmetry (23) should
have a canonical realization. In fact, though, the quantities

L½ξ� ¼ 1

8πG

Z
Δ
½ξD2φ − κξDφ�na; ð30aÞ

M½η� ¼ 1

8πG

Z
Δ
η

�
Dκ −

1

2
κ2
�
na ð30bÞ

do the job. Using (17), we find the Poisson brackets [38]

fL½ξ1�; L½ξ2�g ¼ L½ξ12�; ð31aÞ
fM½η1�;M½η2�g ≜ 0; ð31bÞ

fL½ξ1�;M½η2�g ≜ M½η12� þ
1

16πG

Z
Δ
ðDξ1D2η2

−Dη2D2ξ1Þna; ð31cÞ
with ξ12 and η12 as in Eq. (28). The canonical generators
thus give a representation of the symmetry algebra, but with
an added off-diagonal central term. The appearance of such
central terms is well understood in classical mechanics
[39]; a similar phenomenon in (2þ 1)-dimensional gravity
[40] was critical for the first counting of microstates of the
BTZ black hole [6,7].
Modes, zero modes, and entropy.—Given the BMS3

algebra (31a)–(31c), we may use the results of the second
section to determine an entropy. We must first find a mode

decomposition of the generators. For a black hole with
constant surface gravity, the appropriate modes are of the
form einκv, where v is the advanced time along the horizon,
normalized so that la∇av ¼ 1. Such modes are periodic in
imaginary time with period 2π/κ, as required for non-
singular Green’s functions. For us, κ is not constant, but we
can generalize the periodic modes by defining a phase ψ for
which

Dψ ≜ κ; D̄ψ ≜ 0 ⇔ dψ ≜ −κna

⇔ ψ ≜ −
Z
Δ
κna ≜ −

Z
κdv: ð32Þ

The modes are then

ζn ≜ 1

κ
einψ ðwhere ζ is either ξ or ηÞ; ð33Þ

where the prefactor of 1/κ is chosen so that fζm; ζng ¼
ζmDζn − ζnDζm ¼ −iðm − nÞζmþn. Setting Ln ¼ L½ξn�
and Mn ¼ M½ηn�, our BMS3 algebra reduces to Eq. (2),
with a central term

1

16πG

Z
Δ
ðDξmD2ηn −DηnD2ξmÞna

¼ i
8πG

Z
Δ
mn2eiðmþnÞψdψ : ð34Þ

If we take the integral to be over a single period—
essentially mapping the problem to a circle, as is standard
in conformal field theory—we obtain a central charge of

cLM ¼ 1

4G
: ð35Þ

We also need the zero modes of L and M. For M, this is
straightforward: from Eq. (30b),

M0¼M½η0�¼−
1

16πG

Z
Δ
κna¼

1

16πG

Z
dψ¼ 1

8G
: ð36Þ

For L, the “bulk” contribution to L0 vanishes. However, L,
unlike M, has a boundary contribution. Indeed, the varia-
tion leading to Eq. (29a) involves integration by parts, with
a boundary term

δL½ξ� ¼ � � � þ 1

8πG
½ξDδφ − ðDþ κÞξδφ�j∂Δ: ð37Þ

As noted in the fifth section, the covariant phase space
approach requires us to set Dδφ to zero at the bifurcation
point B. We should certainly not hold φ itself fixed, though,
since that would fix φ along the entire horizon, eliminating
the η symmetry. Instead, we should fix the conjugate
variable κ at B. This requires an added boundary contri-
bution to cancel the variation (37),
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Lbdry
0 ¼ 1

8πG
φðDþ κÞξ0jB ¼ φþ

8πG
; ð38Þ

where φþ is the value of φ at B. Inserting Eqs. (35), (36),
and (38) into Eq. (4), we finally obtain

S ¼ φþ
4G

; ð39Þ

which is precisely the correct Bekenstein-Hawking entropy.
Conclusions.—We have seen that black hole entropy is

indeed governed by horizon symmetries. In contrast to
previous efforts, this derivation requires no stretched
horizon and no extra angular dependence or other ad hoc
ingredients. The main assumptions are merely that dimen-
sional reduction is possible and that the horizon obeys the
boundary conditions of the fifth section.
How should we think about the resulting BMS symmetry?

It is not a gauge symmetry: our counting arguments imply
that states are not invariant but instead transform under high-
dimensional representations. Nor is it quite a standard
asymptotic symmetry: while we can view the horizon as a
sort of boundary, it is a boundary that exists only for a
restricted class of field configurations. Physically, we are
asking a question of conditional probability—if a black hole
is present, what are its properties?—and the symmetries
reflect this condition. In some sense, this is analogous to
entanglement entropy, which requires a similar specification
of a boundary.
There are obvious directions for generalization.

Dimensional reduction picks out the relevant parts of
the geometry, but it would be good to explicitly lift the
argument to higher dimensions. We should clarify
the relationship between the symmetries of this Letter
and other appearances of BMS symmetry at the horizon
[35,41–44], as well as the related horizon symmetry used
by Wall to prove the generalized second law [45]. It should
be feasible to significantly relax the boundary conditions of
the fifth section. It may also be possible to make the
concept of “approximate symmetry” in the sixth section
more precise. In this regard, note that the shift parameter η
appears in the variation of the action with no transverse
derivatives, and that it can also be rescaled by a constant
without changing the algebra, so both its value and its
support can be made arbitrarily small.
Finally, if this symmetry is really responsible for the

universal properties of black hole entropy, it should be
present, if perhaps hidden, in other derivations of entropy.
Hints of such a hidden symmetry have been found for loop
quantum gravity [46], induced gravity [47], and perhaps
near-extremal black holes in string theory [48], but none of
these investigations have exploited the full BMS symmetry.
Ideally, we might hope to do even more: perhaps our BMS
symmetry can be used to couple the black hole to matter
and obtain Hawking radiation, as Emparan and Sachs did
for the (2þ 1)-dimensional black hole [49].
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