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We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane
pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state
from a classically degenerate manifold. In the presence of randomness, however, different orders can be
chosen locally depending on details of the disorder configuration. Using a combination of analytical
considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state
is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to
random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the
available experimental data. These random anisotropies originate from off-diagonal exchange couplings in
the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.
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Rare-earth pyrochlores form one of the most interesting
families of frustrated magnets. A lattice of corner-sharing
tetrahedra combined with a multiplicity of crystal-field
effects for rare-earth ions [1] gives rise to a plethora of
novel states [2]. Among them are disordered spin ices [3–6]
and quantum spin liquids [7–9], found in materials with
magnetic easy-axis anisotropy. In contrast, compounds
exhibiting an easy-plane (or XY) anisotropy tend to order
antiferromagnetically [10–16]. A number of them realize
an “order-by-disorder” mechanism where a long-range-
ordered state is selected, via either thermal or quantum
fluctuations, from a classically degenerate manifold result-
ing from strong frustration [12,17–19]. In the parameter
regime relevant to the paradigmatic example Er2Ti2O7,
both classical and quantum fluctuations select the non-
coplanar state dubbed ψ2 from a one-parameter manifold,
in a remarkable agreement with experiments [11,12].
Quenched disorder provides a different route for lifting

the classical degeneracy by locally relieving the frustration
[20]. Previous theoretical studies showed that both bond
randomness and site dilution tend to stabilize, for small
disorder, the coplanar state dubbed ψ3 [21,22]. This insight
motivated a series of experiments in inhomogeneous XY
pyrochlore magnets. In Er2−xYxTi2O7 [23] magnetic Er3þ

is substituted by nonmagnetic Y3þ, corresponding to site
dilution. For NaCaCo2F7 [24,25] and NaSrCo2F7 [26]
quenched disorder arises from site mixing on the pyro-
chlore A sites (Na/Ca and Na/Sr, respectively), with the
leading effect on magnetism being bond randomness.
However, all experiments find either the ψ2 state, for small
disorder, or short-range magnetic correlations below a
freezing temperature Tf at stronger disorder, suggesting
a spin-glass state.

In this Letter, we solve this puzzle. We develop a more
general theory, valid in the experimentally relevant regime,
showing that disorder-induced random anisotropies desta-
bilize magnetic long-range order (LRO) of easy-plane
pyrochlores. We derive a semiquantitative stability criterion
which indicates that LRO is destroyed beyond a critical
level of quenched disorder. Using extensive Monte Carlo
(MC) simulations for the relevant classical model, we
verify the tendency towards ψ3 order in the weakly diluted
regime [21,22], and provide compelling evidence that the
low-T state at stronger disorder is a cluster spin-glass
(CSG) phase where the system breaks into domains (spins
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FIG. 1. Schematic phase diagram for the easy-plane pyrochlore
antiferromagnet (1) as a function of temperature T and site
dilution x, for parameters with 0 < J��/J� ≤ 2 where order-by-
disorder selects the ψ2 state in the clean limit, x ¼ 0. Quenched
disorder tends to select the ψ3 state at low T, but both ψ2;3 are
destroyed beyond a critical level of disorder xcr where random-
ness breaks the system into magnetic domains resulting in a
cluster spin glass (CSG) phase which survives up to the
percolation threshold xp. (a) Without quantum fluctuations,
i.e., in the classical limit. (b) With quantum fluctuations. Here
ψ3 may disappear completely; for details see text.
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clusters) exhibiting a variety of local ordering patterns
besides the ψ2 and ψ3 ones. For the quantum case, we argue
that the tendency towards ψ3 order is diminished, such that
a significant portion of the phase diagram is dominated
by the CSG phase, Fig. 1, in agreement with available
experiments.
Model.—The low-temperature properties of many rare-

earth insulating pyrochlore oxides are well described by an
effective spin-1/2 model with anisotropic exchange inter-
actions due to the combination of spin-orbit and crystalline
electric-field effects [1]. In Er2Ti2O7, for instance, the spins
have a dominant planar nature, and the associated nearest-
neighbor anisotropic XY model [8,11,12,27,28] can be
written as

H ¼ −
X

hjki
½JxxjkSxjSxk þ JyyjkS

y
jS

y
k þ JxyjkðSxjSyk þ SyjS

x
kÞ�: ð1Þ

Here, the sum runs over pairs of nearest-neighbor (NN)
sites on a cubic pyrochlore lattice, the couplings are

JxxðyyÞjk ¼ 2ðJ�jk ∓ J��
jk cos θjkÞ; Jxyjk ¼ 2J��

jk sin θjk; ð2Þ

and the spin components Sx;y are written in the local
coordinate reference frames (one for each of the four
sublattices), which are confined to planes perpendicular
to the local h111i axes. J� and J�� are the symmetry-
allowed NN exchange couplings [8,12,29]. We adopt the
choice of the local frames as in Refs. [21,25], with the
corresponding angular phases (inside a tetrahedron of sites
labeled from 0 to 3) θ01 ¼ θ23 ¼ 0, θ02 ¼ θ13 ¼ 2π/3,
and θ03 ¼ θ12 ¼ −2π/3.
In the clean limit, and for −2 < α≡ J��/J� < 2, the

mean-field ground states of Eq. (1) are given by spins
collectively pointing along any direction in the XY plane,
exhibiting a continuous U(1) degeneracy with energy
E0/J� ¼ −6NS2. The order-by-disorder mechanism selects
a finite set of six states out of the degenerate manifold:
for 0 < α < 2 [−2 < α < 0] the ψ2 (ψ3) state is selected,
which corresponds to spins pointing along one of
the cos ½ðπ/3Þn�x̂þ sin ½ðπ/3Þn�ŷ [cos ½ðπ/3Þnþ ðπ/6Þ�x̂þ
sin ½ðπ/3Þnþ ðπ/6Þ�ŷ] directions, with n ¼ 0;…; 5, in the
local reference frame [11,12].
For definiteness, we introduce quenched disorder via

J�jk ¼ J�ð1þ ϵjkÞ; J��
jk ¼ J��ð1þ ϵjkÞ; ð3Þ

where ϵjk are random variables. Bond disorder corresponds
to ϵjk drawn independently from some distribution, while
site dilution yields ϵjk ¼ −1 if either site j or site k hosts a
vacancy and ϵjk ¼ 0 otherwise. Site dilution is parame-
trized by the concentration x of nonmagnetic impurities; for
bond randomness see Ref. [30].

Destruction of order by random-fields effects.—We
adopt a transparent argument by Aharony, originally
constructed to show the instability of an ordered magnetic
state against weak random anisotropy [34].
We assume LRO, which is uniform in the local frames of

the Hamiltonian (1), with jαj < 2, such that hSi ¼
hSxix̂þ hSyiŷ ¼ mn̂k, where h� � �i denotes the thermal
average. The corresponding local exchange field is
hj ¼

Pz
k¼1ðJxxjkhSxi þ JxyjkhSyiÞx̂þ ðJyyjkhSyi þ JxyjkhSxiÞŷ,

with the sum running over all the z ¼ 6 NN sites. In the
presence of random off-diagonal disorder the local

exchange field hj ¼ hkj n̂k þ h⊥j n̂⊥ is not parallel to the

mean magnetization. If we assume, for instance, hSxi ¼ 1
2

(and hSyi ¼ 0) the local transverse component stems from
the coupling Jxyjk in Eq. (1), and is simply given by

h⊥j /J�� ¼ P
6
k¼1 ϵjk sin θjk; see also Eqs. (2) and (3).

The random transverse field h⊥j [35] tips the local
magnetization away from the mean direction n̂k. The
resulting transverse magnetization can be estimated in
linear response as hS⊥j i ¼

P
kχ

⊥
jkh

⊥
k , where χ⊥jk is the

transverse bulk susceptibility of the clean system. The

disorder-averaged transverse magnetization hS⊥j i vanishes
because h⊥j has zero mean. In contrast, the averaged

magnetization correlation function is nonzero: hS⊥i S⊥j i ∝
ðδhÞ2 R ddqðχ⊥ðqÞÞ2eiq·rij , where ðδhÞ2 ≡ h⊥2

i > 0 [36]
and d ¼ 3 the number of space dimensions. Further,
χ⊥ðqÞ ∼ 1/ðλþ κμq2μÞ is the Fourier-transformed bulk sus-
ceptibility, with λ being an effective anisotropy energy,
such that the gap Δ ∝

ffiffiffi
λ

p
, and κμ parametrizing the

gradient expansion [12,30].
Importantly, if the anisotropy energy λ were zero, we

would have χ⊥ðqÞ ∝ q−2, such that the local transverse
magnetization fluctuations diverge for d ≤ 4: These fluc-
tuations, arising from random off-diagonal exchange inter-
actions and transmitted by long-wavelength modes, then
destroy the assumed ordered state. This destruction of LRO
can also be interpreted in terms of breaking the system into
domains of linear size l, following Imry and Ma [37].
Consider domains inside which the transverse exchange
fields fh⊥j g are atypically strong, such that the local order
parameter will align with it, gaining an energy scaling as
δhld/2 (as dictates the central limit theorem). In addition,
there is a domain-wall energy cost. λ → 0 implies an
(accidental) continuous symmetry; hence, the order param-
eter can be continuously distorted from the n̂k to the n̂⊥
direction (in a region of fractions of l), yielding a domain
wall energy which scales as J�ld−2. Thus, for d < 4 it is
favorable to break the system into domains of linear
size l≳ ðJ�/δhÞ2/ð4−dÞ.
If, instead, the anisotropy energy λ is finite, the diver-

gence is cured. Then the transverse spin fluctuations hS⊥2
i i
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remain small for small δh; i.e., the assumed LRO is stable
against weak randomness. A stability criterion can be

obtained by the condition hS⊥2
i i ≪ 1. This yields

δh ≪ κd/4λ1−d/4; ð4Þ
up to numerical prefactors [30], where κ2 ¼ P

μκ
2
μ/3. The

criterion (4) is consistent with the fact that small random-
ness destroys LRO in the limit λ → 0 for d < 4, but not for
d > 4. δh grows with increasing randomness, and, hence,
we expect, for λ > 0 and d ¼ 3, the destruction of LRO
beyond a critical level of randomness. Below we show that
the resulting phase is a CSG. Importantly, this argument is
rather general, not restricted to the specific choice of
Eq. (1), since it relies only on the existence of an off-
diagonal exchange coupling [34].
Effective anisotropy and critical disorder.—Without

quenched disorder, the system selects the ψ2 state (for
0 < α < 2), with the spin gap Δ generated by the order-by-
disorder mechanism [11,12,38]. Hence, λ is generically
finite, and the ψ2 state is stable against weak randomness,
i.e., small δh. Indeed, a perturbation generated by a single
defect is expected to be screened in the presence of a gap,
such that a small concentration of defects does not
qualitatively change the bulk state [21,22].
Importantly, in the classical limit the ψ2 gap arises

exclusively from thermal fluctuations, hence, Δ → 0 as
T → 0. Quenched disorder tends to stabilize the ψ3 state
instead [21,22], with the effective anisotropy energy λ
scaling linearly with x [21]. Hence, the putative ψ3 state has
λ ∝ x as T → 0. As we show in Ref. [30], the fluctuating
transverse field follows δh ∝

ffiffiffi
x

p
, such that the criterion (4)

is parametrically fulfilled for small x, but can be expected to
be violated at larger x. We conclude that, in the classical
limit and at low T, the ψ3 state is stable in a window
0 < x < xcr, but replaced by a CSG for x > xcr. The
quantum case is more involved and will be discussed later.
Classical phase diagram.—We are now in the position

to discuss the classical phase diagram of the model (1). As
originally explained in Refs. [21,22], the behavior at small
x is governed by the competition between ψ2 and ψ3 LRO,
favored by thermal fluctuations and weak disorder, respec-
tively. This results in a phase boundary varying linearly
with x. With increasing x, random-field effects grow, and
LRO is eventually destroyed in favor of a CSG at all T. The
low-T competition between ψ3 and CSG is based on
energetics, such that their phase boundary depends weakly
on x at low T. Further, the effective anisotropy λ is
particularly small near the ψ2 − ψ3 boundary, and this is
where CSG will win first upon increasing x. Together, these
considerations yield the qualitative phase diagram in
Fig. 1(a), and they are well borne out by our quantitative
numerical simulations, Fig. 2.
Classical MC simulations.—We turn to a detailed

analysis of the state at large disorder. Previous theoretical
investigations of related cases [39–41] suggest a glassy

state: The system breaks into domains of size l, exhibiting
no long-range magnetism, and eventually freezes into a
spin glass below a temperature Tf. This scenario is in
accordance with available experimental results for the
random XY pyrochlores [23–26], and we now provide
numerical evidence for it in the classical limit [42].
We perform classical MC simulations of the model (1) in

the presence of site dilution and bond randomness [30].
Interpreting the simulation results requires care due to the
several length scales present in the problem. In the clean
limit, besides the linear system size L, there is an emergent
length ΛðTÞ [45,46] associated to a dangerously irrelevant
Z6 anisotropy [13]. Therefore, the ground-state selection
only takes place for L ≫ Λ; to observe this numerically
requires either low T or large L. With quenched disorder
there is yet another length scale, the domain size l, and we
require L ≫ l to observe domain formation.

(a)

(b)

(c)

(e) (f)

(d)

FIG. 2. Classical MC results for the Hamiltonian (1) for off-
diagonal exchange ratio α ¼ 1. (a) Phase diagram as in Fig. 1.
The freezing temperature Tf vanishes at the percolation threshold
xp ¼ 0.61; the black dot marks the transition between ψ2 and
CSG; for details see text. (b) Specific heat cvðTÞ for x ¼ 0.1 and
x ¼ 0.4 (inset). The vertical dashed line marks Tf . (c) Magnetic
correlation length, plotted as ξ⊥ðTÞ/L, for x ¼ 0.4 showing no
crossing points. (d) Spin-glass correlation length, plotted as
ξSGðTÞ/L, for x ¼ 0.4 showing a crossing point at Tf/J� ¼
1.39ð2Þ. (e) Clock order parameter m6 as a function of T/Tf for
L ¼ 10 and several values of x. Inset: zoom around the region
where m6 changes sign. (f) Sample-to-sample distribution func-
tion Pðmx;myÞ at T ¼ Tf/2 for x ¼ 0.4 and L ¼ 12. The full
(dashed) radial lines show the expected positions of the peaks
associated to the ψ2ð3Þ states.
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To monitor the order in the local XY planes we compute

mxðyÞ ¼ N−1PN
j¼1 S

xðyÞ
j . The magnetic order parameter is

m ¼ ðm2
x þm2

yÞ1/2, and we define an associated correlation
length ξ⊥. To discriminate between the states ψ2 and ψ3 we
define a clocklike order parameterm6 ¼ m cos ð6φÞ, where
φ ¼ tan−1 ðmy/mxÞ, with m6 being positive (negative) for
the ψ2ð3Þ states. Moreover, we also keep track of the order-
parameter distribution Pðmx;myÞ [13,45,46], which is
obtained considering statistics from different samples.
In order to study spin-glass freezing we use the
spin-glass (Edwards-Anderson) order parameter qα;βðpÞ ¼
N−1P

jS
αð1Þ
j Sβð2Þj eip·rj , where α and β are spin components,

and (1) and (2) denote two identical copies of the system
(“replicas”) containing the same defect configuration. We
define the spin-glass correlation length ξSG from this order
parameter [47], and the freezing temperature Tf is obtained
locating the crossing point of ξSGðTÞ/L for different system
sizes L. Note that the Edwards-Anderson parameter alone
does not differentiate spin glass from LRO [30].
In the following we focus on the case of site dilution

relevant, e.g., to the compound Er2−xYxTi2O7 [23]; bond
randomness is discussed in Ref. [30]. Sample results are
presented in Fig. 2. We determine the transition from ψ2 to
ψ3 as the point where the curve m6ðTÞ changes sign for
L ¼ 12; see inset of Fig. 2(e). On general grounds, we
expect this transition to be first order. However, we find no
traces of it in the specific heat, as also reported in
Refs. [21,48], a fact which contributes to the error bars
in Fig. 2(a). We leave a more detailed investigation of this
point for future work.
For larger x≳ 0.3 the behavior becomes more glassy:

This is seen in the specific-heat curves; i.e., the maxima for
all L become broad and size independent, signaling the
building up of short-range magnetic correlations above a
freezing temperature Tf [49], Fig. 2(b). Moreover, the
correlation-length data ξ⊥ðTÞ/L do not display crossing
points, Fig. 2(c), whereas ξSGðTÞ/L show well-defined
crossing points, Fig. 2(d). This signals glassy freezing in
the absence of LRO. The freezing temperature TfðxÞ
decreases with x, but remains finite up to the percolation
threshold, xp ¼ 0.61, Fig. 2(a). The fate of the system is
best judged by considering m6 and the distribution
Pðmx;myÞ, Figs. 2(e) and 2(f). m6 is essentially zero for
x≳ 0.4, and Pðmx;myÞ is peaked along a circle (instead of
displaying sharp maxima), suggesting coexisting finite
domains with distinct local spin orientations. We consider
these MC data as clear evidence for the breaking of the
system into domains with frozen spin configurations and no
LRO, i.e., a CSG—this is the central result of this Letter.
The transition from ψ2;3 to the CSG can be determined

from the absence both of crossing points in ξ⊥ðTÞ/L and of
a clear-cut temperature trend of m6. The resulting quanti-
tative phase diagram is in Fig. 2(a), in remarkable

agreement with the qualitative considerations which led
to Fig. 1(a).
Quantum effects.—Turning to the quantum case, we note

that the main effect of quantum fluctuations is to stabilize
ψ2 even at T ¼ 0. This makes ψ2 more competitive against
ψ3 and shifts the corresponding boundary to finite x [21].
As the competition between ψ3 and CSG is expected to be
weakly affected by quantum fluctuations, the extent of
the ψ3 phase consequently shrinks, Fig. 1(b). For strong
quantum effects, S ¼ 1/2, we may speculate that ψ3

disappears completely from the phase diagram, yielding
a direct transition from ψ2 to CSG for all temperatures
below Tf, but this requires a more detailed and quantitative
analysis of quantum effects which is beyond the scope of
this Letter.
Experiments.—We now confront our theory with

experimental data. Assuming that m ¼ hSxi ¼ 1
2

and

hSyi ¼ 0, we obtain the surprisingly simple result δh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xð1 − xÞp

J�� for site dilution [30]. For Er2Ti2O7,
extensive investigations of the order-by-disorder mecha-
nism estimate J�� ¼ 4.2 × 10−2 [12] and Δ ¼ 5.3×
10−2 meV [38]. To discuss the disappearance of LRO,
and given that Eq. (4) is valid at weak disorder only, we
instead compare the strength of the fluctuations δh to the
clean-limit spin gap Δ to obtain an upper bound for the
critical randomness, which reads δhcr ¼ fΔ, where f is a
numerical factor of order unity. Experimentally, LRO
disappears in Er2−xYxTi2O7 around xcr ≈ 0.15 [23]; from
which we extract f ≈ 1/2. Evidently, a more quantitative
theory is desirable for an accurate determination of xcr—
this is left for future work. Our results are applicable to
Er2Pt2O7 as well, a compound which shows so-called
Palmer-Chalker order (α > 2) [16], not arising from an
order-by-disorder mechanism. Using f ¼ 1/2 and exper-
imentally known model parameters, we predict that a small
amount of vacancies, xcr ≈ 4%, destabilizes the magnetic
order in Er2Pt2O7 [30].
Broader aspects of the theory.—Our ideas are of generic

relevance to magnets with strong spin-orbit coupling. Key
to our scenario is the presence of off-diagonal exchange
couplings in the microscopic Hamiltonian. These break
spin-rotational invariance, leading to an anisotropy gap in a
clean ordered state. In the presence of inhomogeneities, the
off-diagonal couplings also produce random fields [35],
which compete with the gap (protecting the ordered state)
and favor CSG formation instead. The critical level of
disorder where LRO disappears is, of course, material
specific.
For the 2D quantum-spin-liquid candidate YbMgGaO4

[50,51], it has been argued that quenched disorder in the
off-diagonal couplings is responsible for the destruction of
LRO [52,53] due to a “pinning-field” mechanism [53].
According to our scenario, this mechanism is akin to the
random-field one which leads to CSG phase. In lower
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dimensions (d < 5/2 [54]), the CSG phase melts into a
fluctuating cluster-paramagnet phase, in accordance with
the observations in Ref. [53].
Conclusions.—Combining analytical arguments and

large-scale MC simulations, we have shown that defects
induce fluctuating random fields in XY pyrochlore anti-
ferromagnets. These ultimately destroy magnetic LRO,
leading to a CSG phase beyond a critical level of random-
ness. Our theory resolves the previous discrepancy between
theory and experiment, and is in semiquantitative agree-
ment with experimental data on diluted Er2Ti2O7.
We expect our ideas to motivate further studies into the

nontrivial role of randomness in magnets with strong spin-
orbit coupling, where the presence of off-diagonal
exchange terms triggers a nontrivial competition between
anisotropy gap and random fields [35].
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