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Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in
terms of ferromagnets. However, the best performing permanent magnets based on rare earths and
transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we
show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet
GdCo5 gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve
this problem by introducing a first-principles approach to calculate temperature-dependent magnetization
versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair
our calculations with measurements on a recently grown single crystal of GdCo5, and find excellent
agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles
calculations to understand RE-TM magnets.
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High-performance permanent magnets, as found in
generators, sensors and actuators, are characterized by a
large volume magnetization and a high coercivity [1]. The
coercivity—which measures the resistance to demagneti-
zation by external fields—is upper-bounded by the materi-
al’s magnetic anisotropy [2], which in qualitative terms
describes a preference for magnetization in particular
directions. Magnetic anisotropy may be partitioned into
two contributions: the shape anisotropy, determined by the
macroscopic dimensions of the sample, and the magneto-
crystalline anisotropy (MCA), which depends only on the
material’s crystal structure and chemical composition.
Horseshoe magnets provide a practical demonstration of
shape anisotropy, but the MCA is less intuitive, arising
from the relativistic quantum mechanical coupling of spin
and orbital degrees of freedom [3].
Permanent magnet technology was revolutionized with

the discovery of the rare-earth–transition-metal (RE-TM)
magnet class, beginning with Sm-Co magnets in 1967 [4]
(whose high-temperature performance is still unmatched
[5]), followed by the world-leading workhorse magnets
based on Nd-Fe-B [6,7]. With the TM providing the large
volume magnetization, careful choice of RE yields MCA
values which massively exceed the shape anisotropy
contribution [8]. RE-TM magnets are now indispensable
to everyday life, but their significant economic and
environmental cost has inspired a global research effort
aimed at replacing the critical materials required in their
manufacture [9].
In order to perform a targeted search for new materials it

is necessary to fully understand the huge MCA of existing
RE-TM magnets. An impressive body of theoretical work

based on crystal field theory has been built up over decades
[10], where model parameters are determined from experi-
ment (e.g., Ref. [11]) or electronic structure calculations
[12–14]. An alternative and increasingly more common
approach is to use these electronic structure calculations,
usually based on density-functional theory (DFT), to
calculate the material’s magnetic properties directly, with-
out referring to the crystal field picture [15–19].
Calculating the MCA of RE-TM magnets presents a

number of challenges to electronic structure theory. The
interaction of localized RE-4f electrons with their itinerant
TM counterparts is poorly described within the most
widely-used first-principles methodology, the local spin-
density approximation (LSDA) [12]. Indeed, the MCA is
inextricably linked to orbital magnetism, whose contribu-
tion to the exchange-correlation energy is missing in spin-
only DFT [20,21]. MCA energies are generally a few meV
per formula unit, necessitating a very high degree of
numerical convergence [22]. Finally, the MCA depends
strongly on temperature, so a practical theory of RE-TM
magnets must go beyond zero-temperature DFT and
include thermal disorder [23].
Even when these significant challenges have been over-

come, there is a more fundamental problem. Experiments
access the MCA indirectly, measuring the change in
magnetization of a material when an external field is
applied in different directions. By contrast, calculations
usually access the MCA directly by evaluating the
change in energy when the material is magnetized in
different directions, with no reference to an external
field. These experimental and computational approaches
arrive at the same MCA energy, provided one is studying
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a ferromagnet. However, the majority of RE-TM magnets
(and many other technologically-important magnetic mate-
rials) are ferrimagnets; i.e., they are composed of sub-
lattices with magnetic moments of distinct magnitudes and
orientations. Crucially, the application of an external field
may introduce canting between these sublattices, affecting
the measured magnetization. Thus, the standard theoretical
approach of ignoring the external field is hard to reconcile
with real experiments on ferrimagnets.
In this Letter, through a combination of calculations and

experiments, we provide the hitherto missing link between
electronic structure theory and practical measurements of
the MCA. Specifically, we show how to directly simulate
experiments by calculating, from first principles (FP), how
the measured magnetization (M) varies as a function of
field (B) applied along different directions and at different
temperatures. We apply our first-principles magnetization
versus field (FPMVB) approach to the RE-TM ferro and
ferrimagnets YCo5 and GdCo5, which are isostructural to
the technologically-important magnet SmCo5 [24] and, in
the case of GdCo5, a source of controversy in the literature
[25–35]. Pairing FPMVB with new measurements of the
MCA of GdCo5 allows us to resolve this controversy. More
generally, FPMVB enables a new level of collaboration
between theory and experiment in understanding the mag-
netic anisotropy of ferrimagnetic materials.
The electronic structure theory behind FPMVB treats

magnetic disorder at a finite temperature T within the
disordered local moment (DLM) picture [36,37]. The meth-
odology allows the calculation of the magnetization of each
sublattice i, MiðTÞ ¼ MiðTÞM̂i, and the torque quantity
∂FðTÞ/∂M̂i, whereF is an approximation to the temperature
dependent free energy. ∂FðTÞ/∂M̂i accounts for the
anisotropy arising from the spin-orbit interaction, while
the contribution from the classical magnetic dipole inter-
action is computed numerically [38]. Many of the technical
details of the DFT-DLM calculations [36,39–43] were
described in our recent study of the magnetization of the
same compounds [44]; the extensions to calculate the torques
are described in Ref. [37]. The Gd-4f electrons are treated
with the local self-interaction correction [43], and we have
also implemented the orbital polarization correction [20]
following Refs. [45,46] using reported Racah parameters
[47]. Details are given as Supplemental Material (SM) [48].
YCo5 and GdCo5 crystallize in the CaCu5 structure,

consisting of alternating hexagonal RECo2c/Co3g layers
[24]. Y is nonmagnetic, while in GdCo5 the large spin
moment of Gd (originating mainly from its half filled 4f
shell) aligns antiferromagnetically with the Co moments. We
now consider a “standard” calculation of theMCAbased on a
rigid rotation of themagnetization. If theGd andComoments
are held antiparallel, GdCo5 is effectively a ferromagnet with
reduced moment MCo −MGd. Then, from the hexagonal
symmetry, we expect the angular dependence of the free
energy to follow κ1 sin2 θ þ κ2 sin4 θ þOðsin6 θÞ, where θ is

the polar angle between the crystallographic c axis and the
magnetization direction. The constants κ1, κ2 determine the
change in free energy ΔF, calculated, e.g., from the force
theorem [49] or the torque dF/dθ [50].
In Fig. 1, we show dF/dθ calculated for ferromagnetic

YCo5 and GdCo5 at 0 and 300 K. Fitting the data to the
derivative of the textbook expression, sin2θðκ1þ2κ2sin2θÞ,
finds κ1 and κ2 to be positive (easy c axis) with κ1 an order
of magnitude larger than κ2. Considering experimentally
measured anisotropy constants in the literature, for YCo5,
our κ1 value of 3.67 meV (all energies are per formula unit,
FU) at 0 K compares favorably to the values of 3.6 and
3.9 meV reported in Refs. [28,51]. At 300 K, our value of
2.19 meV exhibits a slightly faster decay with temperature
compared to experiment (2.6 and 3.0 meV), which we
attribute to our use of a classical spin Hamiltonian in the
DLM picture [36,44]. However, for GdCo5, our calculated
values of κ1 show very poor agreement with the experi-
ments [26,29]. First, at 0 K, we find κ1 to be larger than
YCo5 (4.26 meV), while experimentally the anisotropy
constant is much smaller (1.5, 2.1 meV). Second, we
find κ1 decreases with temperature (2.39 meV at 300 K),
while experimentally the anisotropy constant increases
(2.7, 2.8 meV).
To understand these discrepancies, we must ask how the

anisotropy energies were actually measured. Torque mag-
netometry provides an accurate method of accessing the
MCA [52], but it is technically challenging in RE-TM
magnets, which require very high fields to reach saturation
[53]. Singular point detection [54] and ferromagnetic
resonance [55] has also been used to investigate the
MCA of polycrystalline and thin-film samples. However,
the most commonly-used method for RE-TM magnets,
employed in Refs. [26,29], is based on the seminal 1954
work by Sucksmith and Thompson [56] on the anisotropy
of hexagonal ferromagnets. This work provides a relation
between the measured magnetization Mab and field B
applied in the hard plane in terms of κ1, κ2 and the easy
axis magnetization M0 [48,56]:

ðBM0/2Þ/ðMab/M0Þ≡ η¼ κ1 þ 2κ2ðMab/M0Þ2: ð1Þ
Further introducing m ¼ ðMab/M0Þ, Eq. (1) shows that a
plot of η against m2 should yield a straight line with κ1 as

FIG. 1. Data points and fits of dF/dθ calculated for GdCo5
(blue, empty symbols; Gd and Co moments held antiparallel) and
YCo5 (green, filled symbols), at 0 and 300 K.
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the intercept. Even though this “Sucksmith-Thompson
method” was derived for ferromagnets, the technical
procedure of plotting η against m2 can also be performed
for ferrimagnets like GdCo5 [26,29]. In this case, the
quantity extracted from the intercept is an effective
anisotropy constant Keff so, unlike YCo5, the anisotropy
constants reported in Refs. [26,29] are distinct from the κ1
values extracted from Fig. 1. As recognized at the time of
the original experiments [27–30], the reduced value of Keff
with respect to κ1 of YCo5 is a fingerprint of canting
between the Gd and Co sublattices.
Making contact with previous experiments, thus,

requires that we obtainKeff . To this end, we have developed
a scheme of calculating first-principles hard-plane mag-
netization versus field curves, on which we perform the
Sucksmith-Thompson analysis to directly mirror the
experiments. The central concept of FPMVB is that at
equilibrium, the torques from the exchange, spin-orbit, and
dipole interactions must balance those arising from the
external field. Then,

B ¼ ∂FðTÞ
∂θi

1

Mi cos θi þ
P

j sin θj
∂Mj

∂θi
: ð2Þ

The magnetization at a given B, T is determined by the
angle set fθGd; θCo1 ; θCo2 ;…g, which satisfies Eq. (2) for
every magnetic sublattice. The spin-orbit interaction breaks
the symmetry of the Co3g atoms such that, altogether, there
are four independent angles to vary for GdCo5. The second
term in the denominator of Eq. (2) reflects that the magnetic
moments themselves might depend on θi (magnetization
anisotropy). We have tested (i) neglecting this contribu-
tion, and (ii) modeling the dependence as MiðθiÞ ¼
M0ið1 − pi sin2 θiÞ, where M0i and pi are parametrized
from our calculations.
Figure 2 shows FPMVB curves of GdCo5 calculated

using Eq. (2) with methods (i) and (ii) (crosses and circles),
which yield virtually identical values of Keff . TheM versus
B curves in the left panel resemble those of a ferromagnet
where, as the temperature increases, it becomes easier to
rotate the moments away from the easy axis so that a given
B field induces a larger magnetization. However, plotting η
against m2 in the right panel tells a more interesting
story. The effective anisotropy constant Keff (y-axis inter-
cept) at 0 K is 1.53 meV, much smaller than κ1 of YCo5.
Furthermore, Keff increases with temperature, to 1.74 meV
at 300 K. Therefore, in contrast to the standard calculations
of Fig. 1, the FPMVB approach reproduces the experi-
mental behavior of Refs. [26,29].
Our FPMVB calculations provide a microscopic insight

into the magnetization process. For instance, at 0 K and 9 T,
we calculate that the cobalt moments rotate away from the
easy axis by 6.1°. By contrast, the Gd moments have rotated
by only 3.9°; i.e., the ideal 180° Gd-Co alignment has
reduced by 2.2° (the geometry is shown in Fig. 2). We also

find canting between the different Co sublattices, but not by
more than 0.1° at both 0 and 300 K (the calculated angles as
a function of field are shown in the SM [48]). This Co-Co
canting is small, thanks to the Co-Co ferromagnetic
exchange interaction remaining strong over a wide temper-
ature range [44]. The temperature dependence of Keff can
be traced to the fact that the easy axis magnetization M0 of
GdCo5 initially increases with temperature [44]. Even if
Mab increases with temperature at a given field, a faster
increase in M0 can lead to an overall hardening in
Keff [Eq. (1)].
We assign the canting in GdCo5 to a delicate competition

between the exchange interaction favoring antiparallel
Co/Gd moments, uniaxial anisotropy favoring c-axis
(anti)alignment, and the external field trying to rotate all
moments into the hard plane. We can quantify these
interactions by looking for a model parametrization of
the free energy F. Crucially, we can train the model with an
arbitrarily large set of first-principles calculations exploring
sublattice orientations not accessible experimentally, and
test its performance against the torque calculations of
Eq. (2). Neglecting the 0.1° canting within the cobalt
sublattices gives two free angles, θGd and θCo. Including
the Gd-Co exchange A, uniaxial Co anisotropy K1;Co, and a
dipolar contribution SðθGd; θCoÞ [31,48] leads naturally to a
two-sublattice model [30],

F1ðθGd; θCoÞ ¼ −A cosðθGd − θCoÞ þ K1;Cosin2θCo

þ SðθGd; θCoÞ: ð3Þ

FIG. 2. Magnetization of GdCo5 vs applied magnetic field
shown on a standard plot (left panel) or after the Sucksmith-
Thompson analysis [Eq. (1), right panel]. Crosses/circles are
calculated with methods (i)/(ii) discussed in the text, and the area
between them shaded as a guide to the eye. Note the two methods
are effectively indistinguishable in the left panel. The dashed/solid
lines are calculated from the model free energies F1 and F2. The
right panel also shows the geometry of the magnetization and field
with respect to the crystallographic c-axis (thick gray arrow).
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The training calculations showed additional angular
dependences not captured by F1, so we also investigated:

F2ðθGd; θCoÞ ¼ F1ðθGd; θCoÞ þ K2;Cosin4θCo

þ K1;Gdsin2θGd: ð4Þ

As discussed below the training calculations showed no
strong evidence of Gd-Co exchange anisotropy [31–34].
The dashed (solid) lines in Fig. 2 are the calculated M

versus B curves obtained by minimizing F1ð2Þ −
P

iMi · B.
The second term includes magnetization anisotropy on the
cobalt moments [48,57]. On the scale of the left panel, both
F1 and F2 give excellent fits to the torque calculations,
especially up to moderate fields. The plot of η against m2

reveals some differences, with F2 giving a marginally
improved description of the data, but F1 already captures
the most important physics.
We also applied the FPMVB approach to YCo5, using

Eq. (2) and the model for F introduced in Ref. [57]. Then,
parametrizing the models [48] over the temperature range
0–400 K, calculating M versus B curves, and extracting
Keff using the Sucksmith-Thompson plots gives the results
shown in the left panel of Fig. 3. We also show κ1 of GdCo5
to emphasize the difference between FPMVB calculations
and the “standard” ones of Fig. 1.
Comparing Keff to previously-published experimental

measurements on GdCo5 raises some issues. First, the three
studies in the literature report anisotropy constants that
differ by as much as 1 meV [26,29,58]. Indeed, there was
controversy over whether the observed results were evi-
dence of an anisotropic exchange interaction between Gd
and Co [31,32] or an artifact of poor sample stoichiometry
[33,34]. Furthermore, the only study performed above
room temperature [26] reports, without comment, some
peculiar behavior where Keff of GdCo5 exceeds that of
YCo5 at high temperature [28], despite conventional
wisdom that the half filled 4f shell of Gd does not
contribute to the anisotropy.
Our calculations do in fact show an excess in the rigid-

moment anisotropy of GdCo5 of 16% at 0 K (Fig. 1)
compared to YCo5. The authors of Refs. [29,31] fitted their
experimental data with a much larger excess of 50%, while
the high-field study of Ref. [33] found (11� 15)%, with
the authors of that work attributing the difference to
an improved sample stoichiometry [34]. Our calculated
excess at 0 K is formed from two major contributions:
the dipole interaction energy, which accounts for
0.31 meV/FU, and K1;Gd [Eq. (4)], which we found to
be 24% the size of K1;Co. The nonzero value of K1;Gd is due
to the 5d electrons, whose presence is evident from the Gd
magnetization (7.47 μB at 0 K). We did not find a
significant contribution from anisotropic exchange, which
we tested in two ways: first by attempting to fit a term
Að1 − p0 sin2 θCoÞ cosðθGd − θCoÞ to our training set of
calculations, and also by computing Curie temperatures

with the (rigidly antiparallel) magnetization directed either
along the c or a axes. We found the magnitude of the
anisotropy (p0) to be smaller than 0.5%, negative at 0 K,
and to decrease in magnitude as the temperature is raised.
Consistently, the Curie temperature was found to be only
1 K higher for a axis alignment, which we do not consider
significant.
However, our calculations do not predict the Keff value

of GdCo5 to exceed YCo5. Indeed, in Fig. 3, κ1 of GdCo5
approaches that of YCo5 at high temperatures, which is
significant because κ1 provides an upper bound for Keff
[32]. To resolve this final puzzle, we performed our own
measurements of Keff on the single crystal, whose growth
we reported recently [44]. Hard and easy axis magnetiza-
tion curves up to 7 T were measured in a Quantum Design
superconducting quantum interference device (SQUID)
magnetometer, and the anisotropy constants were extracted
from Sucksmith-Thompson plots [48]. The right panel of
Fig. 3 shows our newly measured data as crosses.
Previously reported measurements are shown in faint blue
or green for GdCo5 [26,29,58] or YCo5 [28,51].
Up to 200 K, there is close agreement between the

experiments of Ref. [26], our own experiments, and the
FPMVB calculations. Above this temperature, our new
experiments show the expected drop in Keff , while the
previously reported data show a continued rise [26]. We
repeated our measurements using different protocols and
found a reasonably large variation in the extractedKeff [48].

FIG. 3. Anisotropy constants Keff vs. temperature of YCo5
(green) and GdCo5 (blue). The left panel shows calculations
using Eq. (2) at 0 and 300 K (stars), or using parameterized model
expressions F1 (diamonds) and F2 (circles), and from Ref. [57]
(YCo5, squares). For GdCo5 we also show in red κ1 extracted
from “standard” calculations where the Gd and Co moments were
held rigidly antiparallel (cf. Fig. 1). The experimental data in the
right panel were measured by us for GdCo5 (crosses, with shaded
background) or taken from Refs. [26,29,58] (squares, dashed
lines, circles) and Refs [28,51] (green diamonds and dashed
lines, YCo5).
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Even taking this variation into account as the shaded area in
Fig. 3, the drop is still observed.
We therefore do not believe the high temperature

behavior reported in Ref. [26] has an intrinsic origin.
Possible extrinsic factors include the method of sample
preparation, degradation of the RECo5 phase at elevated
temperatures [59], and potential systematic error when
extracting Keff . We note that even the idealized theoretical
curves in Fig. 2 show curvature at higher temperature,
making it more difficult to find the intercept.
In conclusion, we have introduced the FPMVB approach

to interpret experiments measuring anisotropy of ferrimag-
nets, particularly RE-TM permanent magnets. We pre-
sented the method in the context of our DLM formalism,
but any electronic structure theory capable of calculating
magnetic couplings relativistically [60–64] should be able
to produce FPMVB curves, at least at zero temperature.
However, standard calculations that neglect the external
field should be used with care when comparing to experi-
ments on ferrimagnets. Similarly, the prototype GdCo5
serves as a reminder that a simple view of the anisotropy
energy does not fully describe the magnetization processes
in ferrimagnets, which might have implications in under-
standing, e.g., magnetization reversal in nanomagnetic
assemblies [65]. Overall, our Letter demonstrates the
benefit of interconnected computational and experimental
research in this key area.
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