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One of the interesting features of open quantum and wave systems is the non-Hermitian degeneracy
called an exceptional point, where not only energy levels but also the corresponding eigenstates coalesce.
We demonstrate that such a degeneracy can appear in optical microdisk cavities by deforming the boundary
extremely weakly. This surprising finding is explained by a semiclassical theory of dynamical tunneling. It
is shown that the exceptional points come in nearly degenerated pairs, originating from the different
symmetry classes of modes. A spatially local chirality of modes at the exceptional point is related to vortex
structures of the Poynting vector.
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Real physical systems are always open systems as they
are never completely decoupled from their environment.
Open quantum (wave) systems can exhibit exceptional
points, in short EPs, in parameter space at which not only
the energy levels (resonant frequencies) but also the
corresponding eigenstates (modes) coalesce [1]. Because
of its relation to other fascinating issues such as parity-time
symmetry [2] or quantum phase transitions [3], EPs have
attracted great attention recently. Intensive theoretical
efforts have been devoted to study EPs in various fields
such as hydrogen atoms [4], photonic lattices [5], and
lasers [6] along with experimental verifications, e.g., in
microwave [7] and optical [8] resonators.
There is another inevitable property of real physical

systems in the context of dynamical system theory: non-
integrability traced back to the impossibility of perfect
symmetries in nature. This fundamental concern is studied
in the research field of quantum chaos [9]. One of the
remarkable results in this field is the dynamical tunneling
through nonenergetic barriers in phase space [10]. Among
several classifications of it [11], so-called “resonance-
assisted tunneling” (RAT), inducing an enhanced coupling
of eigenmodes due to nonlinear resonance chains [12]
placed in between the modes, has been considered as very
useful in describing near-integrable systems [13,14].
Various experiments have confirmed the importance of
dynamical tunneling in, e.g., quantum dots [15], optical
microcavities [16], microwave systems [17], and cold
atoms [18].
Deformed optical microdisks are quasi-two-dimensional

systems that serve as an outstanding example to study both
the openness and the nonintegrability [19]. Up to now, EPs
[20] and RAT [21–23] in microcavities have been inves-
tigated separately. In the present Letter, we combine these
two aspects and reveal the explicit role of RAT in the
formation of EPs in weakly deformed microdisks. Since the

deformation in this Letter is extremely weak and preserves
a simple-connected smooth convex boundary, this pertur-
bation is radically different from the ones reported in [24].
In addition, fruitful characteristics of the EP for applica-
tions, e.g., ultrasensitive sensing of particles [24,25], are
addressed.
As a generic example, we consider the cavity

x2 þ y2ð1þ εx2/R2Þ ¼ R2; ð1Þ
where the deformation parameter ε is dimensionless. For
ε ¼ 0, the cavity is the integrable case of a circle of radiusR.
The corresponding ray dynamical phase space is foliated
by invariant curves of constant angular momentum; see
Fig. 1(a). For small ε, the system is near integrable with a
prominent single (t:r)-resonance chain in phase space. In
this regime, practically no chaotic layer and subisland
structures around this main resonance chain can be seen.

(a) (b)

FIG. 1. Phase space of the ray dynamics (Poincaré surface of
section) in the cavity (1); q ∈ ½0; L� is the arclength coordinate
along the boundary with perimeter L and p ¼ sin χ ∈ ½−1; 1� is
the tangential component of the normalized momentum of the
incident ray. Only the part with p > 0 is shown corresponding to
counterclockwise propagating rays. Curves are generated by
plotting a dot at ðq; pÞ whenever a ray is reflected from the
cavity’s boundary. pc marks the critical line for total internal
reflection; n ¼ 2. The resonance chain is shown by the thick
curve around p1∶4 in (b).
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Here, t ¼ 1 and r ¼ 4 are rotation and bouncing numbers of
the central periodic ray at p1∶4 ¼ 1/

ffiffiffi
2

p
; see Fig. 1(b). When

the effective index of refraction is n >
ffiffiffi
2

p
, the critical line

pc ¼ 1/n for total internal reflection is located under this
resonance chain. Hereafter, we focus on this situation.
The optical modes are defined as (damped) time-

harmonic solutions of Maxwell’s equations with
Sommerfeld’s outgoing-wave condition and the transverse
magnetic polarization condition across the cavity boundary.
In this setup, the modes are expressed by the wave function
ψðx; yÞ ¼ Ezðx; yÞ where Ez is the z component of the
electric field vector. Since the cavity in Eq. (1) has a mirror-
reflection symmetry with respect to both x and y axes, the
modes can be classified into even-even (EE), even-odd
(EO), odd-even (OE), and odd-odd (OO) parities. We
mainly deal with the EE parity. For the circular cavity,
the mode pairs OO-EE and EO-OE are degenerated in their
(complex-valued) dimensionless frequency kR, which can
be obtained analytically by solving the equation [26]

SmðkR; nÞ≡ n
J0m
Jm

ðnkRÞ −Hð1Þ0
m

Hð1Þ
m

ðkRÞ ¼ 0; ð2Þ

where J, J0, H, and H0 are the Bessel function, the
derivative of it, the Hankel function of first kind, and
the derivative of it, respectively. Beside the angular mode
number m there is a radial mode number l labeling the
solutions of Eq. (2) for fixed m.
For a (1∶4)-resonance chain the RAToccurs between the

modes fulfilling the Fermi resonance condition [14,27]
ðΔl;ΔmÞ ¼ ð1; 4Þ. The first step of our scheme is to
determine for fixed ðl; mÞ the refractive index n ¼ nEP
such that Reðkl;mRÞ ¼ Reðklþ1;m−4RÞ using Eq. (2). These
degenerate points appear in Fig. 2 as peaks. Shown is the
degree of degeneracy

Δ−1 ≡ ½Reðkl;mRÞ − Reðklþ1;m−4RÞ�−1; ð3Þ
as a function of n and m for several l. Experimentally, n
cannot be varied over a wide range without changing the

material. However, one can choose a material with n close
to a peak in Fig. 2 and then fine-tune the effective index of
refraction n by fabricating several samples with a different
disk height. In the following, we consider the pair ðl; mÞ ¼
ð1; 22Þ and (2,18), which is labeled i1;2 in Fig. 2.
The next step is to slightly deform the cavity by

increasing ε. The frequencies are calculated using the
boundary element method (BEM) [28]. For the sake of
clear visibility, we use the shifted frequency κ ¼ κr þ iκi ≡
nðk − k̄ÞR with mean frequency k̄ ¼ ðkl;m þ klþ1;m−4Þ/2.
Figure 3 shows the branching of the real and imagi-
nary parts of frequencies at an EP at ðnEP; εEPÞ ≈
ð2.1051; 0.000 434Þ on the path connecting the points
i1;2 and f1;2. This EP is of second order; i.e., exactly
two eigenvalues and eigenstates coalesce. Remarkably, the
EP can be reached by varying ε alone and it occurs at an
extremely weak deformation ε < 10−3.
Now, we make the link between the observed EP and

RAT more explicit. The (t:r)-resonance chain [see Fig. 1(b)
for (1∶4)] of the weakly deformed cavity can be approxi-
mated by the pendulum Hamiltonian [21,29],

HðpÞ ¼ −
ðp − pt∶rÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p2
t∶r

p þ 2Vt∶r cos

�
r
q
L
2π þ ϕ0

�
; ð4Þ

FIG. 2. Degree of degeneracy of mode pairs ðl; mÞ and
ðlþ 1; m − 4Þ given by Eq. (3) as a function of m and n at ε ¼ 0.

(a)

(b)

FIG. 3. Real (a) and imaginary (b) part of the shifted frequency
κ as a function of n and ε calculated with the BEM. The
labels i1 and i2 correspond to the modes ðl; mÞ ¼ ð1; 22Þ and
(2,18), respectively; cf., Fig. 2. The EP is at ðnEP; εEPÞ ≈
ð2.1051; 0.000 434Þ.
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with pt∶r ¼ cosðtπ/rÞ and a global phase ϕ0 ¼ π. The
amplitude Vt∶r in the Hamiltonian (4) can be expressed in
terms of the trace of monodromy matrix Mt∶r of the stable
periodic ray in the center of the resonance chain [21],

Vt∶rðεÞ ¼
LðεÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

t∶r
p
16π2r4

�
arccos

�
TrMt∶rðεÞ

2

��
2

: ð5Þ

We find that this coupling strength Vt∶r can be used in the
exact Hamiltonian in the basis of the unperturbed solutions
of Eq. (2) with a scaling constant

VðεÞ ¼ γt∶rVt∶rðεÞ; ð6Þ

where γt∶r ¼ ReðnEPk0RÞð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

t∶r
p

Þ−1 is obtained
empirically and is confirmed numerically for several
(1∶r)-resonance chains with r¼3, 4, 5 and different values
of nEP. Here, k0 is a solution of Eq. (2) at n ¼ nEP.
Accordingly, the Hamiltonian reads

H ¼
�
κl;mðnEP; εÞ γt∶rVt∶rðεÞ
γt∶rVt∶rðεÞ κlþt;m−rðnEP; εÞ

�
: ð7Þ

For the ðt∶rÞ ¼ ð1∶4Þ-resonance chain, the eigenvalues of
H, corresponding to the modes A;B;… of l ¼ 2 in Fig. 2,
are shown in Fig. 4 in perfect agreement with the BEM
results. The diagonal elements in H depend on ε, following
the area variation of the cavity [26]. However, since the
modes ðl; mÞ and ðlþ 1; m − 4Þ are here influenced by
almost the same amount, we can neglect the ε depend-
ency, κðnEP; εÞ ≈ κðnEP; 0Þ.

Using the Hamiltonian (7) the condition for the EP is
then

γ1∶4V1∶4ðεÞ ¼ � i
2
½κl;mðnEP; 0Þ − κlþ1;m−4ðnEP; 0Þ�: ð8Þ

The rhs is real since n has been fine-tuned such that
Re½κl;mðnEP; 0Þ� ¼ Re½κlþ1;m−4ðnEP; 0Þ�. This implies that
condition (8) can be fulfilled by varying ε alone, explaining
n ≈ const along the path to the EP in Fig. 3.
Figure 5 compares the real-space intensity of the modes

[corresponding to the eigenstates of H in Eq. (7)] near the
EP to their phase-space projections in terms of the Husimi
functions [30]. Whereas modes 1, 2, 5, and 6 are conven-
tional whispering gallery modes, modes 3, 4, 7, and 8
exhibit a localization along the periodic rays due to
interference [31]. As expected, the Husimi functions
show that this is in reasonable approximation related to
the stable (7, 8) and unstable (3, 4) periodic ray in the
(1∶4)-resonance chain.
Figure 6 shows the modes involved in the transition

through the EP. Interestingly, at the EP an abnormal
localization can be observed. The mode is neither localized
on the stable periodic ray trajectory nor on the unstable one
but in between them. The abnormal localization disappears
for ε ≫ εEP (not shown). In order to reveal the origin of the
abnormal localization we mention that the single eigen-
vector at a second-order EP is [33]

jΨiEP ∝ ð1;�iÞT ð9Þ

in a basis of standing waves, with either þ or −. The
superposition of the modes corresponding to this eigen-
vector Ψ�i ∼ ψ0

1 � iψ0
2 possesses chirality [33]. In our

situation, it turns out that they have a vortex structure

FIG. 5. Intensity and incident Husimi function of the modes
marked by the same labels as in Fig. 3. The maximum value is
normalized to be unity. The labels 1, 2, 5, and 6 mark whispering
gallery modes whereas modes 3, 4, 7, and 8 exhibit localization
around the period-4 rays (solid, stable; dashed, unstable). The
superimposed resonance chain in 3, 4, 7, and 8 is vertically
shifted according to the periodic ray shift due to the Goos-
Hänchen shift [32].

(a)

(b)

FIG. 4. Real (a) and imaginary (b) part of the shifted frequency
κ as a function of the deformation parameter ε for l ¼ 2 modes.
Thick-dashed curves and thin-solid curves are the results of the
BEM and Eq. (7). Dashed vertical lines stand for εjEP separating
the weak and the strong coupling regime where the superscript j
refers to A; B;… in Fig. 2. The deformation for E and F is too
weak to be shown here (εE/FEP < 10−5).
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[see Fig. 7(c)] that induces a local spatial chirality of the
wave propagation.
The local chirality, i.e., the alternating wave propagation

direction along the cavity boundary first observed in a
strongly deformed cavity with chaotic ray dynamics [34],
causes here the abnormal localization of the Husimi
function in Fig. 6. At the EP, the Husimi function and
the vortices are explained by the superpositions of the
circular cavity’s modes according to Eq. (9). In Fig. 8, the
Poynting vector of Ψ−i of the lower half boundary shows
the counterclockwise ðp > 0Þ propagation direction
whereas the upper part shows the clockwise ðp < 0Þ
propagation direction. Thus, the Husimi function around
q/L ¼ 1/16 ¼ 0.0625 is on the upper half of phase space

while q/L ¼ 3/16 ¼ 0.1875 is on the lower half of phase
space, which is fully consistent with Fig. 6.
Figures 7(a) and 7(b) reveal that the EPs of EE and OO

modes are nearly degenerated, which is consistent with the
fact that RAT does here not depend on the parity. The vortex
structure [Figs. 7(c) and 7(d)] and the Husimi functions (EE
in Fig. 6, and OO not shown) are also almost the same. The
near degeneracy of the EPs is important because a fourth-
order EP can be possibly constructed by an additional weak
deformation that couples the two symmetry classes by
breaking the mirror-reflection symmetry of the cavity. A
fourth-order EP is expected to generate even higher sensi-
tivity than second-order EPs in sensor applications [35].
For a demonstration of the general validity of our

arguments, we apply Eq. (7) to another system and confirm
a nearly perfect agreement with full numerics. One example
of a ðt∶rÞ ¼ ð1∶3Þ-resonance chain in the cavity

ρðθÞ ¼ R½1þ ε cosð3θÞ� ð10Þ
is given in Fig. 9. Here, the even- and odd-parity modes are
almost identical; thus, only the even mode is displayed
in Fig. 9.

FIG. 6. Intensity and incident Husimi function of the modes
marked by the same labels as in Fig. 3. The Husimi function is the
one at the EP. p0

1∶4 is a vertically shifted (1∶4)-resonance chain as
in Fig. 5. The arrows indicate the direction of the Husimi function
movement of the two modes when ε > εEP after the bifurcation of
ReðκÞ. The maximum value is normalized to be unity.

FIG. 7. Real (a) and imaginary (b) part of the frequency of
ðl; mÞ ¼ ð1; 22Þ and (2,18) modes with EE and OO parity

computed by the BEM. Poynting vector J⃗ ≡ Imðψ�∇⃗ψÞ of the
mode at the EP for EE (c) and OO (d). Long arrows in (c) and
(d) illustrate the average flow. Shading represents jJ⃗j normalized
to be unity at the maximum value.

FIG. 8. Superposition Ψ−i ¼ ψc
1;22 − iψc

2;18 and corresponding
J⃗ where ψc

l;m is a mode in the circular cavity; cf., Fig. 7(c).

Shading represents jJ⃗j normalized to be unity at maximum.

FIG. 9. Complex frequencies of the modes ðl; mÞ ¼ ð5; 21Þ and
(4,24), satisfying a Fermi resonance condition ðΔl;ΔmÞ ¼ ð1; 3Þ,
for the cavity in Eq. (10) as a function of the deformation
parameter ε. The EP is at ðnEP; εEPÞ ¼ ð2.3388; 0.000 421 3Þ.
Solid squares and circles are obtained from the BEM and solid
and dashed curves are given by Eq. (7) for a ðt∶rÞ ¼ ð1∶3Þ-
resonance chain.
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To summarize, we demonstrated the appearance of
exceptional points in extremely weakly deformed micro-
cavities. The finding is explained and motivated by
resonance-assisted tunneling. Extremely weak deformation
promises the ultranarrow linewidth of modes on excep-
tional points, which will boost up the order of sensitivity in
sensor applications. No fragile external perturbations such
as by nanofiber tips (see Ref. [25]) are needed to implement
the exceptional point. This fact is clearly advantageous for
applications. We have shown that the abnormal localization
of Husimi functions at the exceptional point is originated
from local vortices of the Poynting vector, which induces a
spatially local chirality. Nearly degenerated exceptional
points of different symmetry classes were observed. This
finding is also significant since it implies the possibility
of fourth-order exceptional points, which provides an
additional enhancement of sensitivity.
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