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We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated
lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding
explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole
symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed
as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic
field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft
between unit cells, as the defect states become increasingly localized with the gain and loss strength.
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Defect states are ubiquitous in periodic systems due to
the existence of band gaps. In the simple case of a point
defect, if its energy falls deep into a band gap, then it cannot
couple efficiently to the rest of the system, where no
propagating mode exists at its energy. As a result, a defect
state localized at this point is formed, no matter whether the
defect is in the bulk or at the edge of the system. Take the
simplest periodic system in one dimension (1D), for
example: its unit cell contains one element of energy ω0

that couples to its nearest neighbors with strength t > 0,
where a single band extends from ½ω0 − 2t;ω0 þ 2t� across
the Brillouin zone (BZ). A defect state forms if the on site
energy of a single defect at the edge is detuned from ω0 by
more than t, and it appears above (below) this band if the
detuning is positive (negative).
A particularly interesting case for defect states is in the

presence of a flatband, where a small detuning is sufficient
to create a defect state in general. A flatband is dispersion-
less inside the whole BZ, and systems that exhibit flatbands
have attracted considerable interest in the past few years,
including optical [1,2] and photonic lattices [3–6], gra-
phene [7,8], superconductors [9–12], fractional quantum
Hall systems [13–15], and exciton-polariton condensates
[16,17]. Because of the singular density of states at the
flatband energy, several interesting localization phenomena
and their scaling properties have been identified [18–22].
In Refs. [23–25], parity-time (PT) symmetric perturba-

tions, i.e., those with a complex potential satisfying VðxÞ ¼
V�ð−xÞ [26–51], were introduced to study their effects on
an existing flatband in the underlying Hermitian system.
Meanwhile, it was known that the introduction of a PT
symmetric potential can collapse two neighboring bands
into a single one in terms of their real parts [32], which is
flat in some cases [52,53]. The conditions that led to this

flatness in a non-Hermitian system were poorly understood,
and in this Letter, we point out that the mechanism that leads
to these flatbands is actually due to another symmetry, i.e.,
non-Hermitian particle-hole (NHPH) symmetry [54,55]. We
should mention that similar to the Hermitian case, a non-
Hermitian flatband can also exist by engineering a Wannier
function that is an eigenstate of thewhole lattice (see Sec. I in
Ref. [56], which includes Refs. [57–59]).
With NHPH symmetry, the effective Hamiltonian anti-

commutes with an antilinear operator, and a particularly
simple way to achieve it employs a photonic lattice [55]:
starting with an underlying Hermitian system with chiral
symmetry (also known as sublattice symmetry), which
consists of identical elements on two sublattices coupled by
nearest neighbor coupling (e.g., a square lattice, honey-
comb lattice, and so on), NHPH symmetry is automatically
satisfied once spatial gain and loss modulation is applied.
The flatband resulted from NHPH symmetry consists of

photonic zero modes, which share certain traits as their
condensed matter counterparts (i.e., the Majorana zero
modes [60–62]). However, these photonic zero modes
are not necessarily localized in space, and we study the
defect states emerging from these non-Hermitian flatbands
by introducing a point defect. We employ the simplest 1D
photonic lattice mentioned before, but now with gain and
loss modulation that doubles or quadruples the size of the
unit cell. We show that a flatband is formed when the gain
and loss strength γ exceeds a critical value. Now by
introducing a point defect at the edge of the system, a
defect state appears and becomes increasingly localized as
the non-Hermiticity of the system increases. This defect
state behaves as a chain with two types of links, one rigid
within a unit cell and one soft between unit cells. We find
that the emergence of the defect state can be viewed as an
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unconventional alignment of a pseudospin under the
influence of a complex-valued pseudomagnetic field and,
in some cases, the result of a PT transition. These results
are first discussed using a tight-binding model and then
verified by ab initio vector simulations of Maxwell’s
equations in photonics waveguides.
Non-Hermitian flatband.—The periodic system we con-

sider is the simplest 1D lattice mentioned in the Introduction,
and we choose the identical on site energy of the lattice sites
to be the zero point of its energy levels.With the introduction
of gain and loss modulation, the non-Hermitian system can
be captured by the tight-binding model

i∂tψn ¼ iγnψn þ tðψn−1 þ ψnþ1Þðn ¼ 1; 2;…Þ: ð1Þ
Below we consider a periodic imaginary potential with
γn ¼ γnþm, where m is an even integer. For an odd m, the
system does not have two sublattices and hence NHPH
symmetry does not hold.
When the period m ¼ 2 [see Fig. 1(a)], the effective

Hamiltonian can be written in the following form, by
dropping an offset of the imaginary potential

H2 ¼
�

iγ tð1þ e−2ikÞ
tð1þ e2ikÞ −iγ

�
: ð2Þ

γ here is defined as ðγn − γnþ1Þ/2, and we have set the
distance between two neighboring lattice sites to be one. The
dispersion relations of this system are then given by ε�ðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t2ð1þ cos 2kÞ − γ2

p
in the BZ k ∈ ½−π/2; π/2Þ. This

effective Hamiltonian satisfies

fH2; CTg ¼ 0; ½H2;PT� ¼ 0; ð3Þ
i.e., it has both NHPH symmetry and PT symmetry (see
Sec. II in Ref. [56]). Here T is the time-reversal operator in
the form of the complex conjugation, and the chiral operator
C ¼ ðcos kÞσz − i sin k1 and parity operator P ¼ σx
are given by the Pauli matrices and the identity matrix.
The curly and square brackets denote anticommutation and
commutation relations as usual.

We note that PT symmetry dictates that the bands of
the system satisfy εiðkÞ ¼ ε�jðkÞ, where i, j are band
indices. In the case that i, j are different, the two bands
have the same Re½ε� but different Im½ε�, which was a result
of spontaneous PT symmetry breaking [27]. Nevertheless,
PT symmetry does not ensure that their identical Re½ε�
needs to be flat in the BZ, and in Ref. [32] this merged band
was indeed found to be curved.
NHPH symmetry, on the other hand, leads to a band

structure satisfying εiðkÞ ¼ −ε�jðkÞ instead [55]. It clearly
indicates that, when i ¼ j, a flatband at Re½ε� ¼ 0 can
emerge with photonic zero modes. For the m ¼ 2 case
above, this flatband starts to emerge from the boundary
of the BZ as soon as γ is nonzero, and it is formed
completely when γ > γc ≡ 2t [see Fig. 1(b)]. In Sec. III
of Ref. [56], we show another example where m ¼ 4 and
the system lacks PT symmetry; the existence of a non-
Hermitian flatband in this case corroborates the role of
NHPH symmetry.
Defect states.—Having shown that NHPH symmetry

leads to a non-Hermitian flatband, next we probe the defect
states emerging from it. One example is shown in Fig. 2(a),
where a defect of detuning Δ is introduced to the left edge
of the system (now of a finite length). We note that the
defect state is formed at a smallΔ as a result of the flatband,
which is in contrast to the Hermitian case (e.g., the simplest
1D lattice) we have mentioned in the Introduction.
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FIG. 1. (a) Schematic of a gain and loss modulated lattice with
period m ¼ 2. The box indicates the unit cell. (b),(c) Real and
imaginary parts of the bands in (a). The dashed lines in (b) mark
the Hermitian bands when γ ¼ 0. The dashed-dotted line shows
their partial collapse when γ ¼ 1.5t. The solid line shows the
completed flatband when γ ≥ 2t. The solid and dotted lines in (c)
are for γ ¼ 2t and 3t, respectively.
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FIG. 2. Emergence of a defect state from a non-Hermitian
flatband as a function of the defect detuning Δ, where the period
of the gain and loss modulation is m ¼ 2. (a),(b) Real and
imaginary parts of the defect state energy as a function of the
detuning Δ. The solid lines and the dots show numerical results
and the analytical expression (4), respectively. γ ¼ 2t is used.
In (a), the gray lines show the almost unperturbed flatband
energies of the bulk modes. In (b), the dashed line shows the
localization length of the defect state. (c) Intensity profile of the
defect state with Δ ¼ t. γ ¼ 2tð1.3tÞ for the solid (dotted) line.
Only the left five unit cells are shown (marked by the “rigid links”
that are parallel and γ independent). (d) Same as (c), but with
Δ ¼ t/2: γ ¼ 2tð1.1tÞ for the solid (dotted) line.
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One interesting feature of the defect state is its staggered
intensity profile on the log scale [Figs. 2(c) and 2(d)]: if we
define the unit cells by counting from the n ¼ 2 site (i.e.,
avoiding the defect at the left edge), the intensity ratio R
within each unit cell is a constant for all unit cells. The
same is true for the intensity ratio R0 between the gain (loss)
sites in two neighboring unit cells. Based on these
observations, we derive an analytical expression for εΔ
of the defect state in Sec. IV of Ref. [56],

εΔ ¼ ðt2 þ Δ2Þ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 − Δ2 − 2iγΔÞ2 þ 4t2Δ2

p
2Δ

; ð4Þ

where the “−ðþÞ” sign should be used for Δ < tðΔ > tÞ.
This expression agrees nicely with the numerical data in
Figs. 2(a) and 2(b).
Furthermore, we find that the intracell intensity ratio R

mentioned above is simply given by

R ¼ Δ2

t2
ð5Þ

and independent of the non-Hermitian parameter γ.
Meanwhile, the intercell intensity ratio R0 is given by

R0 ¼ Δ4

t4

���� εΔ þ iγ
εΔ − iγ

����
2

; ð6Þ

which does vary with γ. Therefore, the defect state behaves
as a chain with two types of links as we increase the non-
Hermiticity of the system via γ: one rigid within a unit cell
and one soft between unit cells. This observation also
indicates that the wave function of the defect state is
exponentially localized on both sublattices [Figs. 2(c)
and 2(d)], with the same localization length given by
ξ ¼ 4/ lnR0. At first glance, this result may seem counter-
intuitive because one would expect that the intensity of the
wave will be amplified on the gain lattice sites and
attenuated on the loss lattice sites, which will result in a
varying intercell intensity ratio along the lattice and differ-
ent localization lengths on the gain and loss sublattices.
However, we remind the reader that here gain and loss do
not describe wave propagation along the lattice. It is most
obvious in a photonic lattice consisting of parallel wave-
guides, where the gain and loss characterizes wave propa-
gation along the waveguides. We also note that the
localization length is not directly related to Im½εΔ�. The
latter is determined simultaneously by R and R0, which lead
to a nonmonotonic Δ dependence of Im½εΔ� [see Fig. 2(b)];
the localization length, on the other hand, reduces mono-
tonically as Δ increases.
Another interesting question about the defect state is how

it evolves from the underlying Hermitian system as γ
increases and the flatband is formed. As Figs. 3(a) and 3(b)
show, the defect state originates from the middle of the

Hermitian band, especially when Δ is small. By inspecting
Eq. (4), we find that jΔj ¼ t is a special case, where a PT
transition takes place at γ ¼ t. We note that this is a
different PT transition from those that take place on the
real-ε axis when the flatband is formed. We also note that
Eq. (4) applies only when the defect state is localized and
has a staggering intensity profile. Therefore, it is not
surprising that its prediction in Fig. 3(a) [and Fig. 3(b)]
deviates from the numerical result when γ is small and the
defect state is still in the bulk (see Sec. V in Ref. [56]).
Nevertheless, the PT broken phase of εΔ in γ > t,
characterized by its γ-independent real part, is faithfully
manifested by the numerical data.
Now if we inspect the spatial profile of the defect state as

it evolves with γ, we observe an unconventional alignment
of a pseudospin under the influence of a complex-valued
pseudomagnetic field. To be more specific, we first rewrite
the effective Hamiltonian (2) using the Pauli matrices

H2 ¼ tð1þ cos kaÞσx − t sin kaσy þ iγσz ≡ −h · σ; ð7Þ

where hðγÞ ¼ ½−tð1þ cos kaÞ; t sin ka;−iγ� is our com-
plex-valued pseudomagnetic field. We normalize the wave
function ½ψL;ψG�T in each unit cell when calculating hσi,
and the result is plotted in Figs. 3(c)–3(e) as a function of γ
when Δ ¼ t. It is clear that hσi displays a spatially
dependent orientation when γ < t, but an aligned hσi is
found across the whole lattice when γ > t. This value of
hσi is given by ð−1; 0; 0Þ and can be viewed as the result of
an unconventional alignment of a pseudospin, since the

FIG. 3. Emergence of a defect state from a non-Hermitian
flatband as a function of the gain and loss strength γ with period
m ¼ 2. (a),(b) Real part of all the modes in the system (solid
lines) with Δ ¼ t and t/2, respectively. The black line indicates
the evolution of the defect mode, and the circles are the prediction
of Eq. (4). (c)–(e) False color plots of the pseudospin hσix;y;z as a
function of position and γ in (a). Only the left 25 unit cells are
shown.
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direction of a complex h cannot be uniquely defined. The
same alignment process takes place for other values of Δ as
well. For example, hσi becomes ½−0.8; 0;−0.6� when
Δ ¼ t/2. We note that hσiy is always zero in the aligned
state; it is, in fact, proportional to the optical flux between
the gain and loss sites [63] in a unit cell by definition
[i.e., iðψ�

GψL − ψGψ
�
LÞ], which vanishes as one can show

that ψL/ψG ¼ −Δ/t is real (whose square gives R). Using
this ratio, we also derive hσix ¼ −2Δt/ðΔ2 þ t2Þ, hσiz ¼
ðΔ2 − t2Þ/ðΔ2 þ t2Þ, which agree nicely with their afore-
mentioned numerical values (see also Sec. VI in Ref. [56]).
Photonic realization.—Next we present a realistic

design using coupled photonic waveguides to demonstrate
the practical feasibility of the predicted effects given above.
Each waveguide has a square cross section, which is
1.5 μm wide and has 500-nm-thick InGaAsP multiple
quantum wells on top of an InP substrate [see Fig. 4(a)].
When optically pumped, the quantum wells supply the
gain, while the loss can be provided, for example, by a thin
Cr/Ge double layer on top of the quantum wells, which
also blocks the pump. Similar structures have been used
in a number of experimental demonstrations with fine
controlled gain and loss ratios [64,65]. The propagating
mode along the waveguide direction can be denoted by

Ψ⃗ðx; y; zÞ ¼ E⃗ðx; yÞe−iβz, where E⃗ is the vector electric
field. The propagation distance z and propagation constant
β now play the roles of time and the eigenvalue ε of the
effective Hamiltonian, respectively.
Below we introduce the effective index neff ¼ βλ/2π to

characterize each propagating mode, with the wavelength
chosen at λ ¼ 1.55 μm. By performing a finite-difference-
time-domain simulation of Maxwell’s equations using

MEEP [66] and a perfectly matched layer as the global
boundary condition, we find neff ¼ 3.25≡ n0 for the
fundamental mode in a single waveguide [see Fig. 4(b)].
With two coupled waveguides separated by 0.2 μm,
we find that the two corresponding neff’s now differ by
1.17 × 10−4, indicating a dimensionless coupling constant
t ¼ 5.83 × 10−5. Now if we consider 20 waveguides, their
individual fundamental modes couple to form a band with
bandwidth Δneff ¼ 2.31 × 10−4, which agrees well with the
tight-binding prediction (4t) mentioned in the Introduction
[see Fig. 4(c)]. By increasing gain and loss incorporated as
the imaginary part n00 of the top layer(s) that plays the role of
the non-Hermitian parameter γ, we illustrate the forming of
the non-Hermitian flatband in Figs. 4(e) and 4(f) when n00 is
increased to 2t, again verifying the prediction of the tight-
binding model. Furthermore, we introduce a “point defect”
similar to Fig. 2 by including an index detuning δn ¼
7.43 × 10−5 in the gain layer of the left waveguide, which
can be achieved, for example, by placing a layer of Ge on top
of the waveguide [64,65] (see also Sec. VII in Ref. [56]); it
results in a change of the single waveguide neff by t, and
we recover the staircase mode profile that displays an
n00-independent rigid link inside a unit cell and an
n00-dependent “soft link” between unit cells (see Fig. 5).
Conclusion and discussion.—In summary, we have

shown that NHPH symmetry can lead to a flatband
consisting of photonic zero modes, which explains the
previous finding in PT symmetric systems where NHPH
symmetry is hidden. Although we have only examined 1D
lattices here, this mechanism also applies in higher dimen-
sions (see Sec. VIII in Ref. [56], which includes Ref. [67]).
The defect states emerging from this flatband exhibit
several interesting properties, such as possessing two types
of links, one rigid within a unit cell and one soft between
unit cells, as the defect states become increasingly localized
with the non-Hermitian parameter. These behaviors, first
predicted using a tight-binding model, have been verified
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by full vector simulations of Maxwell’s equations for the
propagation modes in coupled photonic waveguides.
The emergence of these defect states can be viewed as

an unconventional alignment of a pseudospin under the
influence of a complex-valued pseudomagnetic field and,
in certain cases, the result of a PT transition. We note that,
for this pseudospin in our photonic lattice, spin-spin and
spin-orbital interactions are absent and difficult to intro-
duce; hence, they are not considered here.
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