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It has been shown that single-particle wave functions, of both photons and electrons, can be created with
a phase vortex, i.e., an intrinsic orbital angular momentum (OAM). A recent experiment has claimed
similar success using neutrons [C. W. Clark et al., Nature, 525, 504 (2015)]. We show that their results are
insufficient to unambiguously demonstrate OAM, and they can be fully explained as phase contrast
interference patterns. Furthermore, given the small transverse coherence length of the neutrons in the
original experiment, the probability that any neutron was placed in an OAM state is vanishingly small. We
highlight the importance of the relative size of the coherence length, which presents a unique challenge for
neutron experiments compared to electron or photon work, and we suggest improvements for the creation
of neutron OAM states.
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Orbital angular momentum (OAM) or “vortex states”
were experimentally realized with photons over 20 years
ago [1], and more recently, they have also been created in
electron beams [2,3]. These states carry an intrinsic angular
momentum that is quantized �lℏ [4]. This intrinsic OAM
provides a new degree of freedom, affecting interactions
and scattering. A recent paper by Clark et al. claimed to
demonstrate the creation of quantized orbital angular
momentum states in neutron beams [5]. We show here
that, because of the very small transverse neutron coher-
ence lengths reported, the claim of Clark et al. cannot be
supported by their data.
OAM states of matter, currently limited to electron beams,

are the subject of significant ongoing research [6,7]. For
example, electrons in l ¼ �1 OAM states can behave like
circularly polarized light when probing condensed matter
systems [3]. Additionally, the two-body scattering behavior
of particles carrying intrinsic OAM may provide tests of
fundamental physics [8]. The creation of neutronOAMstates
would provide new avenues for testing scattering and
increase the utility of thermal neutrons as a structural probe.
However, the characteristics of cold neutron sources differ
from the electron microscopes or lasers that have heretofore
been used in OAM experiments. We begin by reviewing
neutron interferometry and the features of the neutron beam.
Then we show that the results of Ref. [5] are not sufficient to
unambiguously demonstrate an OAM. Given the known
properties of the experiment, we show that a negligible
number of neutronswere transformed into anOAMstate.We
conclude by briefly discussing improved OAM detection
schemes and the importance of the transverse coherence
when designing OAM experiments.

The interferometer used in Ref. [5] follows the well-
known Laue-Laue-Laue perfect crystal interferometer
design that is used in both neutron [9,10] and x-ray studies
[11]. It functions as a Mach-Zehnder interferometer in
which an incoming wave packet is split, traverses two
separate paths, and then is recombined [12]. The outgoing
intensity IO varies with a path-dependent phase difference
ΔφðSÞ

IO½ΔφðSÞ� ¼ Aþ B cos ½ΔφðSÞ�; ð1Þ

where S parametrically describes the property giving rise to
the phase difference, and A and B are experiment-dependent
parameters that govern the observed contrast. For a perfectly
machined interferometer, the constants A and B are equal,
and the contrast will be 100%. In an experiment, a uniform
material is placed in path I, such that thewave packet interacts
with it, and phase shifts from this interaction give rise to the
measured variations in IO.
The phase shift ΔφðSÞ of a neutron wave packet moving

through uniform matter is given by the neutron optics
formula [13]

Δφ ¼ −λbNhðSÞ; ð2Þ

where λ is the neutron wavelength, hðSÞ is the path length
through the material, and b and N are the material’s
coherent neutron-nuclear scattering length and number
density, respectively. Combining Eqs. (1) and (2) provides
information about the dimensions or composition of the
material. However, interference is a single-particle quantum
effect, and the intensity in Eq. (1) only gives the probability
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for observing a single neutron. A final phase-contrast
image is created by summing the results of many repeated
single-neutron interference measurements.
Cold neutrons coming from a reactor, e.g., the NIST

Center for Neutron Research facility used in Ref. [5], and
Bragg-reflecting from a pyrolytic graphite monochromat-
ing crystal have coherence lengths of several tens of nm
in the vertical direction, of order 5,000 nm in the horizontal
direction [14], and about 20 nm in the longitudinal
direction [15,16]. A recent experiment showed that the
vertical coherence length in the NIST interferometer instru-
ment is about 80 nm [17], yielding an approximate trans-
verse coherence area of 0.4 × 106 nm2. The cross sectional
area of the neutron beam depends on the experimental
arrangement, but it is of order 0.5 cm2 ¼ 0.5 × 1014 nm2.
An individual neutron, therefore, samples approximately
10−8 of the area of the total beam. At a nominal flux of
107 neutrons per cm2 s, the mean distance between neu-
trons is approximately 4 cm. The coherence size and flux of
the neutrons ensure that each neutron interferes only with
itself. An interferometry image is generated by collecting
many single-neutron results, where each subsequent neu-
tron travels a parallel path S, randomly offset within the
beam.
The Clark et al. experiment involved placing various

aluminum spiral “ramp” phase plates (SPP) (see Fig. 1) into
one leg of the interferometer. These objects had diameters
ranging from 10 –15 mm and step thicknesses hs of 112,
224, and 840 μm. The SPP thickness varies linearly with
azimuthal angle about the center of the SPP as

hðΘÞ ¼ h0 þ hs
Θ
2π

: ð3Þ

A device (phase flag) is included in the interferometer to
cancel any parts of the phase difference not arising from the
angular term in Eq. (3). In the experiment, the neutrons had
a kinetic energy of 11.14 meV, corresponding to a wave-
length of 0.271 nm. The monochromaticity ðΔλ/λÞ of this
beam is approximately 0.25 percent. The scattering length

of aluminum is 3.449 fm [18], and the atom density is
6.030 × 1022 cm−3. Thus, according to Eq. (2), the phase
shift corresponding to a step height hs of 112 μm is
Δφs ¼ 6.312 rad ≈ 2π. The other SPPs were machined
to approximate net phase variations of various integral or
half-integral multiples of 2π.
By construction, the phase shift Δφs along S depends on

the azimuthal angle Θ of the SPP, and correspondingly, the
intensity IO is given, apart from a constant phase differ-
ence, which can be adjusted to zero by

IO½Θ� ¼ Aþ B cos ½ðλbNhs/2πÞΘ�: ð4Þ

The parameter λbNhs/2π is at the experimenters’ disposal,
since it depends on the material and step height chosen.
We define M ≡ λbNhs/2π, giving

IO½Θ� ¼ Aþ B cos ½MΘ�; ð5Þ

where M can be an any real number, including an integer,
depending upon the design of the SPP placed in the
interferometer. For example, suppose that two SPPs are
placed sequentially in the beam path, one with a step
thickness hs ¼ 112 μm and a second one with a step
thickness 224 μm, then the variation of the intensity as a
function of azimuthal angle would be given by

IO½Θ� ¼ Aþ B cos ½3Θ�; ð6Þ

such that the intensity pattern on the screen would show 3
lobes, completely describing the image displayed in Fig. 4
of Ref. [5].
All of the other two-dimensional intensity maps therein

can be explained in an analogous manner: phase contrast
images of the thickness of the SPPs. Phase contrast imaging
is well known for both x-rays [19] and neutrons [20].
The images arise directly as a consequence of Eq. (5), but
the parameter M is a continuous real number related to the
step height. The images can be accounted for without
requiring any reference to OAM states. Therefore a differ-
ent experimental measurement is required to confirm a
neutron OAM.
Spiral phase plates have been used successfully in optical

experiments to create OAM states with laser beams [21,22].
While the neutron and photon SPP experiments appear to be
analogous, the difference in relative transverse coherence is
crucial. In the case of a laser beam, each photon has a
transverse coherence length that is on the same scale as the
phase plate and beam diameters, whereas the neutron wave
packets are relatively nanoscopic. As we will show, creating
an OAM state with an SPP requires a transverse coherence
length comparable to the beam and SPP diameters.
A possible reason for the interpretation given by Clark

et al. of the images constituting their data comes from the
following considerations. Each neutron will experience a

FIG. 1. Schematic diagram of an aluminum spiral phase plate
(SPP) used in the Clark et al. experiment and based on Fig. 1 of
Ref. [5]. The radial and azimuthal coordinates give the surface
location of a particular coherent sub-beam within the incoherent
mixture of sub-beams. The step height hs is strongly exaggerated
in the figure.
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transverse impulse in momentum pΘ ¼ ℏQΘ in the azimu-
thal −Θ̂ direction upon exiting the SPP as shown in Fig. 2.
The scattering angle in Fig. 2, for small angles of incidence
and refraction (i.e., for R > 100 nm), is given by
γ ≈ ðλ2bNÞhs/ð4π2RÞ, such that the value of the angular
momentum about the SPP axis arising from this impulse is

LSPP
z ≈ −ℏR

λbNhs
2πR

¼ −ℏM; ð7Þ

which is independent of R in the stated limit of small
scattering angle. An integral value of M may be selected
by judicious construction of the SPP, giving this angular
momentum the appearance of a quantum effect. However,
Eq. (7) is equally valid for rays with no vortex or OAM
character.
Next, we evaluate the expectation value of the intrinsic

angular momentum for a single neutron wave packet that
has passed through the SPP. We begin by modeling an
incident neutron striking the SPP off axis, centered at
(R0, Θ0), in the paraxial approximation, namely the
direction of propagation differs little from the ẑ direction.
Within the paraxial approximation, Laguerre-Gaussian
(LG) beams provide a complete basis with well-defined
orbital angular momentum [7]. We assume that the incident
wave packet has no OAM, and we use the (l ¼ 0, n ¼ 0)
LG solution. We take the minimum beam waist to be ξT ,
the transverse coherence length (taken for simplicity to be a
single parameter). Our calculations show that the radius of
curvature of the wave front is slowly varying and nearly
infinite, and hence, the beam waist changes little within the
interferometer. Therefore, the transmitted transversely-
normalized wave function is

ψ tðr; θ; zÞ ¼
ffiffiffiffiffiffiffi

2/π
p

ξT
e−r

2/ξ2T eikze−iMΘðr;θÞ; ð8Þ

where the wave packet has acquired a position-dependent
phase MΘðr; θÞ from the SPP.

Using this wave function, we can calculate the expect-
ation values of the angular momentum about the center of
the packet, i.e., the intrinsic OAM.

hLziR0
¼ hψ tj

�

−iℏ
∂
∂θ

�

jψ ti

¼ −2
πξ2T

ℏM
Z

∞

0

rdre
−2r2

ξ2
T

Z

2π

0

dθ
∂Θðr; θÞ

∂θ : ð9Þ

The angular integral can be easily evaluated by examining
Fig. 3. As the angle θ undergoes its excursion during
integration, the angle Θðr; θÞ also varies. So long as r < R0

the net excursion of Θ is zero, but when r > R0, Θ
undergoes a 2π excursion as θ does. Hence the angular
integral is 2πHðr − R0Þ, whereH is the Heaviside function.
Incorporating the Heaviside function into the radial inte-
gral, we have:

2π

Z

∞

R0

rdre
−2r2

ξ2
T ¼ 2π

ξ2T
4
e
−2R2

0

ξ2
T : ð10Þ

Our result for the expectation value of the intrinsic OAM
for ψ t is

hLziR0
¼ −ℏMe

−2R2
0

ξ2
T : ð11Þ

We can arbitrarily distinguish this to be a substantial
probability for a neutron acquiring OAM when the value
of R0 is such that the exponential term is ≥ e−0.5. Using this
criterion, for a transverse coherence length of ξT ¼
5; 000 nm and a beam radius of 0.5 cm, about one in a
million neutrons would acquire an OAM in the Clark et al.
experiment. Conversely, if the transverse coherence length
of the beam were comparable to the radius of the SPP or the
neutron beam, this expression shows that the expectation
value of the OAM about the c.m. axis for each neutron
would approach −ℏM. The vast majority of neutrons would
be in quantized OAM states with an angular momentum of
−ℏM, as in optical experiments.

FIG. 2. Neutron optical ray diagram showing the refraction of
a ray leaving the SPP surface at angle α0 having entered it
at incident angle α. The scattering angle is γ ¼ α − α0. The
scattering vector jQ⃗j ¼ 2k sin ðγ/2Þ has a component in the −Θ̂
direction of QΘ ¼ −k sinðγÞ, representing an azimuthal impulse
given to the neutron by the SPP.

FIG. 3. Relationship between local wave function coordinates
(r, θ) and SPP coordinates (R, Θ) for a neutron centered at
(R0, Θ0) emerging from the SPP. The thick line is the raised step,
looking at the SPP towards the −ẑ direction.
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For the wave function in Eq. (8), we calculate the
expectation value of the total angular momentum about
the SPP axis (which includes the angular momentum about
the c.m. axis) by replacing the angular derivative in the
operator by ð∂/∂ΘÞ. In doing so, we recover the result
obtained by the refraction method in Eq. (7) above, namely
hLziSPP ¼ −ℏM. However, this extrinsic angular momen-
tum relative to the SPP axis varies continuously withM and
has no quantum character.
In conclusion, the 2D patterns observed in the Refs. [5]

and [23] can be understood as simply arising from the
interference intensity given by Eq. (5), with no reference to
the intrinsic OAM. While an alternative way of interpreting
the observed interference patterns is to think of M as
characterizing the angular momentum about the SPP axis,
this angular momentum is not quantized, and moreover, it
does not arise from a twisted wave front associated with a
vortex wave. Hence, it is not a relevant physical quantity
available to be transferred in subsequent interactions of the
neutron with other systems. The important physical quan-
tity is the intrinsic OAM, i.e., that gained by a neutron wave
packet about its center of momentum. A model calculation
gives a vanishingly small value of the expectation value of
this OAM for the vast majority of incident neutrons because
of the small transverse coherence of their wave functions.
Crucially, the interferometry measurements of Clark

et al. are unable to distinguish between the case at hand,
where a macroscopic beam of neutrons having small
transverse coherence interrogates the phase contrast of
the SPP, versus a beam of macroscopically transversely
coherent neutrons in OAM states. This is clear from
Eq. (11) in the limit of a large coherence length ξT . The
creation of neutron OAM states could be tested using a
method analogous to Ref. [24] or through scattering or
decay measurements. The OAM carried by the individual
neutrons would be conserved both in magnitude and
direction through the reaction, changing the energies or
spatial distributions of the end products.
The small transverse coherence length of the neutron

beam is the primary barrier to the creation of neutron OAM
states. As we have shown, the method used by Clark et al.
would be effective if the incoming neutron beam were
coherent across the diameter of the beam. In principle,
improved transverse coherence can be achieved, at the cost
of flux, by placing a pinhole in the beam with a SPP placed
sufficiently downstream for the wave function to have
expanded transversely to cover it. Alternatively, different
schemes for generating monochromatic neutron beams may
provide sufficient coherence [25].

We want to thank Jeffrey Lynn, Rob Dimeo, and Chuck
Majkrzak for useful and important conversations. Also,more
than a year ago, SamWerner pointed out that the 2D images
displayed in Ref. [5] are actually phase contrast images of
the thickness profiles of the SPPs, having no direct con-
nection to orbital angular momentum.
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