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Electron waiting times are an important concept in the analysis of quantum transport in nanoscale
conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper
pair splitters that create spatially separated spin-entangled electrons. A short waiting time between
electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long
waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally,
the waiting time distributions can be measured using real-time single-electron detectors in the regime of
slow tunneling, where conventional current measurements are demanding. Our work is important for
understanding the fundamental transport processes in Cooper pair splitters and the predictions may be
verified using current technology.
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Introduction.—Quantum technologies that exploit non-
classical phenomena such as the discreteness of physical
observables, coherent superpositions, and quantum entan-
glement promise solutions to current challenges in com-
munication, computation, sensing, and metrology [1]. For
solid-state quantum computers, an important building
block is a device that can generate pairs of entangled
electrons [2]. In one prominent approach, Cooper pairs in a
superconductor are converted into spatially separated
electrons that preserve the entanglement of their spins
[3,4]. Cooper pair splitters have been realized in architec-
tures based on superconductor–normal-state hybrid sys-
tems [5–7], InAs nanowires [8–11], carbon nanotubes
[12–16], and recently graphene structures [17–19].
The efficiency of Cooper pair splitters can be determined

using conductance measurements [8–17]. For some setups,
the efficiency is approaching unity [10,14], indicating that
Cooper pair splitters may be suited for electronics-based
quantum technologies. One may now hope to detect the
entanglement of the outgoing electrons by measuring the
cross correlations of the currents in the output channels
[10,20–22]. However, while these approaches are based on
conventional current measurements, recent progress in the
real-time detection of single electrons is opening another
promising avenue for understanding quantum transport in
nanoscale devices [23].
In this Letter, we propose to characterize Cooper pair

splitters using the distribution of electron waiting times.
The electron waiting time is the time that passes between
subsequent tunneling events. Waiting time distributions
(WTDs) have in recent years been investigated theoretically
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FIG. 1. Electron waiting times of a Cooper pair splitter. (a) Two
QDs are coupled to a superconducting source of Cooper pairs and
two normal-metal drains. A tunneling event (star) starts the clock,
which symbolizes the measurement scheme based on single-
electron detectors [23,52–54]. A subsequent tunneling event
stops it. WTDs for tunneling into the same or different leads
are shown in (b) and (c). The WTDs WjiðτÞ ½Wex

ji ðτÞ� are
evaluated using Eq. (4) [(5)]. Parameters are ξ ≔ γL ¼ γR ¼ 10γ,
γCPS ¼ γEC ¼ γ, and ϵL ¼ ϵR ¼ 0. Dashed lines are exponentials
with decay rates ξ (gray) and 2γ2CPS/ξ (black). Corresponding to
the recent experiments, the rate γ would be on the order of
kilohertz and the waiting times would be in the millisecond
range [52–54].
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for quantum transport in quantum dots [24–38], meso-
scopic conductors [39–46], and superconducting devices
[47–51]. Moreover, in a very recent experiment, the
distribution of electron waiting times was measured for a
quantum dot [52]. Here, we show that the WTD is a
sensitive tool to unravel the working principle of the
Cooper pair splitter in Fig. 1(a). As we discuss below,
WTDs such as those in Figs. 1(b) and 1(c) provide clear
signatures of the Cooper pair splitting. Specifically, the
splitting of Cooper pairs is associated with a large peak at
short times in the WTD for tunneling into different drains
[Fig. 1(c)]. This information is complementary to what can
be learned from conventional current and noise measure-
ments. In addition, with the ability to detect single electrons
participating in Andreev tunneling across normal-state–
superconductor interfaces [53,54], a measurement of the
electron waiting times in a Cooper pair splitter appears
feasible with current technology. In the recent experiment
on WTDs, the typical waiting times were on the order of
milliseconds [52], which corresponds well to the kilohertz
tunneling rates reported in Refs. [53,54]. Importantly, such
small tunneling rates do not produce electrical currents that
can be measured using standard techniques. On the other
hand, the tunneling of electrons can be detected in real time
and the distribution of waiting times can be measured.
Cooper pair splitter.—The Cooper pair splitter consists

of two quantum dots (QDs) coupled to a superconductor
and two normal leads [4]. The grounded superconductor
acts as a source of Cooper pairs. The negatively biased
leads serve as drains for electrons in the QDs. Coulomb
interactions are so strong that each QD cannot be occupied
by more than one electron at a time. With a large super-
conducting gap, we may focus on the subgap transport (the
working regime is specified below). The superconductor
can then be included in an effective Hamiltonian of the QDs
reading [55–61]

ĤQDs ¼
X

lσ

ϵld̂
†
lσd̂lσ − γEC

X

σ

ðd̂†Lσd̂Rσ þ H:c:Þ

−
γCPSffiffiffi

2
p ðd̂†L↓d̂†R↑ − d̂†L↑d̂

†
R↓ þ H:c:Þ: ð1Þ

Here, the operator d̂†lσ (d̂lσ) creates (annihilates) an
electron in QDl, l ∈ fL; Rg with spin σ ∈ f↑;↓g and
energy ϵl relative to the chemical potential of the super-
conductor, μS ¼ 0. The amplitudes γCPS and γEC corre-
spond to Cooper pair splitting (CPS) and elastic
cotunneling (EC) processes, respectively, and can be
expressed in terms of microscopic parameters following
Ref. [55]. We have excluded direct coupling between the
QDs as in the experiment of Ref. [17], but such processes
can easily be incorporated within our formalism. In the CPS
processes, a Cooper pair in the superconductor is converted
into two spin-entangled electrons in a singlet state with one
electron in each QD or vice versa. Such processes are

favored when the empty state of the QDs is energetically
degenerate with the doubly occupied state, ϵL þ ϵR ¼ 0
[62–65]. In the spin-preserving EC processes, an electron
in one of the QDs is transferred via the superconductor to
the other QD. These processes are on resonance when the
QD levels are energetically aligned, ϵL ¼ ϵR.
Transport through each QD is described by resonant

tunneling and must be treated to all orders in the coupling to
the leads. When the resonant level is deep inside the
transport energy window, the transport can be described
by a Markovian quantum master equation for the reduced
density matrix ρ̂ of the QDs (with ℏ ¼ 1) [55,66]

d
dt

ρ̂ ¼ Lρ̂ ¼ −i½ĤQDs; ρ̂� þDρ̂: ð2Þ

Here, the Liouvillian L describes both coherent processes
governed by ĤQDs and incoherent single-electron jumps to
the normal metals captured by the Lindblad dissipator

Dρ̂ ¼
X

lσ

γl

�
d̂lσρ̂d̂

†
lσ −

1

2
fρ̂; d̂†lσd̂lσg

�
: ð3Þ

We take the rate γl at which electrons leave via lead l to be
independent of the spin. To summarize, we work in the
regime U, Δ ≫ jVj ≫ ϵl, γl, γCPS, γEC, where U is the
Coulomb interaction energy, Δ is the superconducting gap,
and V is the negative voltage. Because of the large negative
bias, the electron transport from the QDs to the drain
electrodes is unidirectional and the thermal smearing of the
distribution functions in the leads becomes unimportant.
Electron waiting times.—We characterize the Cooper

pair splitter by the distribution of electron waiting times.
Given that an electron with spin σ has just tunneled into
lead l, the electron waiting time τ is the time that passes
until another electron with spin σ0 tunnels into lead l0. The
electron waiting time is a fluctuating quantity that must be
characterized by a probability distribution. The terms in
Eq. (3) of the form J lσρ̂≡ γld̂lσρ̂d̂

†
lσ describe incoherent

tunneling processes in which an electron with spin σ in
QDl tunnels into lead l. The distribution of waiting times
between transitions of type i ¼ lσ and j ¼ l0σ0 can then be
expressed as [24,44,67]

WjiðτÞ ¼
Tr½JjeðL−JjÞτJiρ̂S�

Tr½Jiρ̂S�
; ð4Þ

where ρ̂S is the stationary density matrix given as the
normalized solution to the equation Lρ̂S ¼ 0. The expres-
sion above for the WTD can be understood as follows: after
a transition of type i has occurred, the system is evolved
until the next transition of type j happens. The denominator
ensures that the WTD is normalized to unity when
integrated over all possible waiting times.
Figures 1(b) and 1(c) showWTDs for transitions into the

same lead and different leads, respectively. Experimentally,
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transitions between different charge states can be monitored
using charge detectors that measure the occupation of each
QD [23,52–54]. In Fig. 1(b), we consider the waiting time
between transitions into the left lead. Here, the coupling to
the drain electrodes is much larger than the coupling to the
superconductor, γL, γR ≫ γCPS, γEC. As the QDs cannot be
doubly occupied, the WTD is strongly suppressed at short
times τ ≪ γ−1CPS and vanishes completely at τ ¼ 0, since
simultaneous transitions into the same lead are not possible.
At long times, the WTD is governed by the slow refilling of
the left QD and the subsequent tunneling of an electron into
the left lead. This WTD resembles what one would expect
for single electron tunneling through a single QD without
any Cooper pair splitting [24].
A very different picture emerges from the waiting time

between transitions into different leads. In Fig. 1(c), the
splitting of a Cooper pair is signaled by a large peak in the
WTD at short times τ ≪ γ−1CPS. In this case, the tunneling of
an electron into the left lead is quickly followed by a
tunneling event into the right lead on a time scale given by
the coupling to the right lead γ−1R . The slow decay of the
WTD describes the waiting time between electrons origi-
nating from different Cooper pairs. This WTD clearly
reflects the nonlocal nature of the CPS processes and it
carries information about the short waiting times between
electrons from the same Cooper pair and the long waiting
times between electrons originating from different Cooper
pairs. Experimentally, a measurement of the WTD in
Fig. 1(c) would constitute strong evidence of efficient
Cooper pair splitting.
Exclusive WTDs.—To better understand the time scales

that enter the WTDs, we introduce “exclusive” WTDs.
Again, we consider the waiting time that passes between
transitions of types i and j. However, we now exclude
cases, where any other transitions occur during the waiting
time. This WTD is then defined as [24,47]

W ex
ji ðτÞ ¼

Tr½JjeLexτJiρ̂S�
Tr½Jiρ̂S�

; ð5Þ

where Lex ¼ L −
P

kJk removes all possible transitions
from the full time evolution given by L. In contrast to the
WTD in Eq. (4), the exclusive WTD is only normalized
upon integrating over all waiting times and summing over
all types of final events. Because of its simpler structure, the
exclusive WTD can be evaluated analytically. For example,
with γL ¼ γR ¼ ξ and ϵL ¼ −ϵR ¼ ϵ, we find

Wex
lσ;l0σðτÞ ¼

ξ

2
e−ξτα2CPS½1 − cos ðωCPSτÞ�;

Wex
lσ;lσ̄ðτÞ ¼ ξe−ξτα2EC½1 − cosðωECτÞ� þWex

lσ;lσðτÞ;

Wex
lσ;l̄ σ̄ðτÞ ¼

ξ

2
e−ξτ þ 2Wex

lσ;lσðτÞ −Wex
lσ;lσ̄ðτÞ; ð6Þ

with L̄ ¼ R and ↑̄ ¼ ↓ and vice versa, and we have
identified the frequencies ωCPS ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2CPS − ðξ/2Þ2

p
and

ωEC ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2EC þ ϵ2

p
associated with the coherent CPS

and EC processes and introduced the ratios αCPS ¼
γCPS/ωCPS and αEC ¼ γEC/ωEC. If γCPS ≫ γL, γR, the
WTD exhibits oscillations with frequency ωCPS ≃ 2γCPS.
By contrast, for γCPS ≪ γL, γR, the frequency becomes
imaginary and now rather corresponds to an exponential
decay. In Fig. 1, we show the exclusive WTDs
Wex

ll0 ðτÞ ¼
P

σ;σ0W
ex
lσ;l0σ0 ðτÞ/2. For short times, we have

Wex
LLðτÞ ∼ ðωCPSτÞ2. By contrast, for the WTD in Fig. 1(c)

the short-time behavior Wex
RLðτÞ ∼ e−ξτ is governed by the

escape rate, while the long-time decay Wex
RLðτÞ ∼ e−2τγ

2
CPS/ξ

also involves the CPS amplitude.
Spin-resolved WTDs.—The splitting of Cooper pairs can

be identified in the charge-resolved WTDs as we saw in
Fig. 1(c). Still, further information can be obtained from the
spin-resolved WTDs. Experimentally, one might measure
spin-resolved WTDs using ferromagnetic detectors
[58,68–70]. In Fig. 2, we show WTDs that are resolved
with respect to the spin degree of freedom. In Figs. 2(a) and
2(b), the levels are detuned so that only CPS processes are
on resonance. Again, the WTDs for transitions into the
same lead show essentially no signatures of the CPS
processes. By contrast, the CPS processes can be identified
in the WTD in Fig. 2(b) for transitions into different leads.
Here, the CPS processes show up as a large enhancement at
short times in the WTD for opposite spins. Because of the

(a) (b)

(c) (d)

FIG. 2. Spin-resolved WTDs. (a) Spin-resolved WTDs for
tunneling into the same lead. (b) Spin-resolved WTDs for
tunneling into different leads. In (a) and (b), the parameters
are γL ¼ γR ≡ 10γ, γCPS ¼ γEC ¼ γ, and ϵL ¼ −ϵR ¼ 10γ.
(c) Spin-resolved WTDs for tunneling into the same lead with
same parameters except that ϵL ¼ ϵR ¼ 0. (d) The branching
ratio in Eq. (7) corresponding to the WTDs in (b).
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splitting of a Cooper pair, the tunneling of a spin-up
electron into the left lead is likely followed by the tunneling
of a spin-down electron into the right lead. A similar
enhancement is not found for electrons with the same spin,
since they must originate from different Cooper pairs.
In Fig. 2(c), both the CPS and EC processes are tuned

into resonance. The combination of these processes leads to
an enhancement at intermediate times in the WTD for
electrons with opposite spins tunneling into the same lead.
In this case, two electrons from a Cooper pair can exit into
the same drain due to a spin-preserving EC process that
transfers the second electron from the right to the left QD
before it exits via the left drain. This is not possible for
electrons with the same spin, since they cannot originate
from the same Cooper pair, and the corresponding WTD is
not enhanced in a similar way.
Importantly, from the spin-resolved WTDs, we can

evaluate the branching ratio of the spins defined as

RR↓;L↑ðτÞ≡ WR↓;L↑ðτÞ
WR↓;L↑ðτÞ þWR↑;L↑ðτÞ

: ð7Þ

The branching ratio is the probability that two electrons,
which tunnel into different leads separated by the waiting
time τ, have opposite spins. Figure 2(d) shows that it is
highly probable that electrons separated by a short waiting
time have oppositive spins and they likely originate from
the same Cooper pair. This finding is important since it
allows us to conclude that the large peak in Fig. 1(c) with
near-unity probability corresponds to opposite spins origi-
nating from the same Cooper pair [71].
Until now, we have assumed that the coupling to the

drains is much larger than the coupling to the super-
conductor. This regime may be most attractive for efficient
Cooper pair splitting, since the split pair of electrons is
quickly transferred to the drains. However, the opposite
regime, γCPS, γEC ≫ γL, γR, is also interesting. In Fig. 3, the
rate of escape to the drains is so slow that several coherent
oscillations between the QDs and the superconductor can
be completed [24,28,47]. As discussed after Eq. (6), the
frequency of the oscillations is given by ωCPS ≃ 2γCPS.

Joint WTDs.—The WTDs concern waiting times
between subsequent tunneling events. However, they do
not describe correlations between consecutive waiting
times. Such correlations can be characterized by evaluating
the joint distribution of electron waiting times [44,49,72]

Wkjiðτ1; τ2Þ ¼
Tr½JkeðL−JkÞτ2JjeðL−JjÞτ1Jiρ̂S�

Tr½Jiρ̂S�
; ð8Þ

which generalizes Eq. (4) to subsequent waiting times
between transitions of type i, j, and k. For uncorrelated
waiting times, the joint distribution factorizes as
Wkjðτ2ÞWjiðτ1Þ in terms of the individual WTDs.
Correlations can be quantified by the correlation function

ΔWkjiðτ1; τ2Þ ¼
Wkjiðτ1; τ2Þ −Wkjðτ2ÞWjiðτ1Þ

Wkjðτ2ÞWjiðτ1Þ
; ð9Þ

which is positive (negative) for positively (negatively)
correlated waiting times and zero without correlations.
Figure 4 shows joint WTDs and correlation functions for

electrons arriving in different leads. In Figs. 4(a) and 4(b),
the coupling to the drains is much larger than the coupling
to the superconductor. We see that a short waiting time is
likely followed by a long waiting time, but is unlikely to be
followed by another short waiting time. A short waiting
time corresponds to two electrons originating from the
same Cooper pair, while a long waiting time is given by
the slow refilling of the QDs by a split Cooper pair.
The observed correlations reflect that the two processes,
i.e., emission into the drains and refilling from the

(a) (b)

FIG. 3. Coherent oscillations. (a) Spin-resolved WTDs for
tunneling into the same lead. (b) Spin-resolved WTDs for
tunneling into different leads. In both (a) and (b), the parameters
are γL ¼ γR ≡ 0.1γ, γCPS ¼ γEC ¼ γ, and ϵL ¼ −ϵR ¼ 10γ.

(c)

(b)(a)

(d)

FIG. 4. Joint WTDs and correlation functions. In (a) and (b),
the parameters are γL ¼ γR ¼ 10γ, γCPS ¼ γEC ≡ γ, and
ϵL ¼ ϵR ¼ 0. In (c) and (d), the parameters are γL ¼ γR ¼ 0.1γ,
γCPS ¼ γEC ¼ γ, and ϵL ¼ ϵR ¼ 0.
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superconductor, follow one after another. A similar behav-
ior is seen in Figs. 4(c) and 4(d), where the coupling to the
superconductor is the largest. However, now the rate of
escape to the drains is so slow that coherent oscillations
between the QDs and the superconductor have time to
form, giving rise to the oscillatory pattern in the joint WTD
and the correlation function.
Conclusions.—We have proposed to use waiting time

distributions to characterize Cooper pair splitters. The
nonlocal nature of the Cooper pair splitting can be clearly
identified in the distribution of waiting times. Based on the
recent progress in the real-time detection of Andreev
tunneling, we expect the predictions to be accessible in
future experiments. Specifically, a measurement of the
WTD would constitute a strong evidence of efficient
Cooper pair splitting in the regime of slow tunneling,
where conventional current measurements are demanding.
Theoretically, it would be interesting to formulate a Bell-
like inequality for the waiting times to certify the entan-
glement of the split Cooper pairs.
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