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The crystal orientation of an exfoliated black phosphorous flake is determined by purely electrical
means. A sequence of three resistance measurements on an arbitrarily shaped flake with five contacts
determines the three independent components of the anisotropic in-plane resistivity tensor, thereby
revealing the crystal axes. The resistivity anisotropy ratio decreases linearly with increasing temperature T
and carrier density reaching a maximum ratio of 3.0 at low temperatures and densities, while mobility
indicates impurity scattering at low T and acoustic phonon scattering at high T.
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Layered two-dimensional (2D) materials, also called van
der Waals materials, have an anisotropic crystal structure,
allowing micromechanical exfoliation into thin sheets.
However, many important 2D materials including black
phosphorus (BP), GaTe, ReS2, SnS, and WTe2 possess
additional in-plane structural anisotropy that manifests as
an anisotropic in-plane resistance [1–5]. For example, BP is
a high mobility layered semiconductor with a band gap
from 0.3 to 1.7 eVas its thickness is decreased from bulk to
monolayer [1,6–8]. Its properties have been demonstrated
in electronics as field-effect transistors [1,2,9] and
optoelectronics as photodetectors [10,11]. Of particular
importance are the anisotropic properties of BP, including
quasi-1D excitons in the monolayer limit, a half-linear,
half-parabolic dispersion under hydrostatic pressure, and
anisotropic negative Poisson’s ratio under compression
[12–16]. All such anisotropic studies require identification
of the crystallographic orientation of BP, which until now
has required polarized Raman and optical reflection spec-
troscopy [2,7,11,17]. However, there currently exists no
electrical method to accurately measure the crystal orien-
tation in as-exfoliated BP. Prior electrical methods to
quantify anisotropy have strict geometric constraints on
the sample shape and/or crystallographic orientation, limit-
ing their utility with exfoliated materials [18–21]. The
radial starburst contact pattern commonly employed in 2D
anisotropy characterization is only qualitatively accurate
due to the two-point series contact resistances and the
short circuiting of current through the many peripheral
contacts [2,22].
Here, an all-electrical technique quantifies the aniso-

tropic resistivity tensor of arbitrarily shaped few-layer
flakes of BP, thereby revealing in-plane crystal orientation.
Three or more four-point resistance measurements that use

at least five contacts at the periphery of a thin flake can
determine the three unknowns—the c- and a-axis resis-
tivity, and anisotropy angle—via geometric transformations
including conformal mapping. The crystallographic orien-
tation deduced from this all-electrical conformal five-
contact (C5C) method is confirmed with polarized
Raman spectroscopy. For the first time, both temperature
and carrier density dependence of the electrical anisotropy
are reported in the same flake in an exfoliated 2D material.
Devices were fabricated using black phosphorus micro-

mechanically exfoliated onto a degenerately doped Si wafer
with a 300 nm thermal SiO2 film. This served as the gate
electrode and gate dielectric, respectively. Electron beam
lithography was used to define device features, and the
electrodes consisted of thermally evaporated Ni/Au
10/40 nm. In order to minimize oxidation during process-
ing, the device was stored in a glovebox, and anhydrous
1-methyl-2-pyrrolidone was used for resist liftoff. After
device fabrication, alumina was deposited via atomic layer
deposition in order to encapsulate the device.
There are a total of three unknowns in the 2D anisotropy

problem. Here we parametrize them as the anisotropy angle
θ between the x-y lab basis and the c-a crystal basis, the
sheet resistivity determinant ρ2s ¼ kρk, and a geometric
anisotropy scaling factor α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρcc/ρaa4
p

≤ 1. The c-a axes
represent the right-handed coordinate system for the arm-
chair and zigzag directions in black phosphorus, respec-
tively, and θ subtends the angle between the laboratory x
axis and the crystal c axis. Though, in general, no analytical
expression can solve these three unknowns in terms of
measured four-point resistances, it is nonetheless straight-
forward to compute the inverse problem, namely, to
calculate the four-point resistance value Rk for a given
sample shape and contact configuration k when the

PHYSICAL REVIEW LETTERS 120, 086801 (2018)
Editors' Suggestion

0031-9007=18=120(8)=086801(5) 086801-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.086801&domain=pdf&date_stamp=2018-02-21
https://doi.org/10.1103/PhysRevLett.120.086801
https://doi.org/10.1103/PhysRevLett.120.086801
https://doi.org/10.1103/PhysRevLett.120.086801
https://doi.org/10.1103/PhysRevLett.120.086801


parameters ρs, θ, and α are known. From such an
expression, each four-point resistance measurement then
constrains the space of possible ρs, θ, and α values, and the
intersection of three such subspaces from three different
measurements will define the unique solution for ρs, θ,
and α.
The first step is therefore to calculate this 4-point

resistance function Rk for the sample shape of interest in
terms of prescribed ρs, θ, and α parameters. A photograph
of the exfoliated flake will be used to define a polygon
approximation to the sample shape, and three coordinate
transformations will be performed that each preserve the
resistivity determinant. As an example, consider the poly-
gon-shaped sample in Fig. 1(a) with V ¼ 7 geometric
vertices. The anisotropic 2D resistivity direction set by θ is
depicted graphically with rectangular cross-hatched lines,
where the widely (closely) spaced green (blue) lines

represent the high- (low-) resistivity direction. Of these
seven vertices, N ¼ 5 represent contacts, labeled A–E. The
contacts can also be located along flat edges using the same
coordinate transformations and analysis. Because each
transformation preserves the resistivity determinant, the
sheet resistivity scale ρs can be factored out of the
expression for the four-point resistance:

Rkðρs; θ; αÞ ¼ ρsfkðθ; αÞ: ð1Þ

The resulting geometric function fkðθ; αÞ for a given
sample geometry and contact configuration k depends on
the rotation and scale transformation variables θ and α,
respectively. The first transformation [Fig. 1(b)] is a
counterclockwise rotation by the anisotropy angle θ from
the x-y lab basis to the c-a crystal basis. The second
transformation [Fig. 1(c)] is an anisotropic scaling [23]
where the new c0-a0 axes are scaled by 1/α and α,
respectively, and the anisotropy scaling factor α maps
the original anisotropic conductor to an equivalent iso-
tropic conductor with the same sheet resistivity determi-
nant:

�
c0

a0

�
¼

�
1/α 0

0 α

��
cos θ sin θ

− sin θ cos θ

��
x

y

�
: ð2Þ

The third and final determinant-preserving step is the
reverse Schwarz-Christoffel transformation. A forward
Schwarz-Christoffel transformation [24] maps a coordinate
w ¼ uþ iv in the upper half u-v plane to a point ζ ¼
c0 þ ia0 within a polygon in the c0-a0 plane according to the
complex integral,

ζðwÞ ¼
Zw
0

1

ðζ − u1Þ1−β1/πðζ − u2Þ1−β2/πðζ − u3Þ1−β3/π…
dζ;

ð3Þ

where ui are points along the u axis in the u-v plane, which
map to vertices ðc0i; a0iÞ of the polygon in the c0-a0 plane
with subtended vertex angles βi. The reverse Schwarz-
Christoffel transformation is simply the computational
inverse of this one-to-one mapping, from the polygon to
the upper half-plane [25]. The geometric function for any
four-point resistance can now be calculated analytically
from the point ui along the boundary of the semi-infinite
plane [26]:

flm;np ¼ 1

π
ln

�ðun − ulÞðup − umÞ
ðup − ulÞðun − umÞ

�
≡ fk: ð4Þ

Here l, m label the � current and n, p the � voltage
contact pairs, respectively, of the kth contact configuration,

FIG. 1. Conformal five-contact method on anisotropic BP
sample A. (a) Polygon approximation of the sample in the x-y
lab frame. (b) Rotation by θ to the c-a crystal axes. (c) Anisotropic
scaling of crystal axes by 1/α and α, respectively, to equivalent
isotropic resistivity sample in the c0-a0 basis. (d) Conformal
mapping to the semi-infinite u-v plane. Inset photo: sample A in
the lab frame overlaid with polygon approximation. All four-
point resistances of the original anisotropic sample are identical
to those of the semi-infinite plane. (e) C5C Variance minimiza-
tion method: color plot of normalized variance σðα; θÞ from
Eq. (3) on a 2θ polar plot with minimum variance at θ0 ¼ 93° and
α0 ¼ 0.85 (r ¼ 1.9), where ρs;0 ¼ 11 kΩ. (f) C5C Parametric
intersection method: shown are various αðθÞ curves on a 2θ polar
plot. Variance minimization method results in (e) agree with
parametric intersection results in (f).
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where k ¼ f1; ...;Mg for the total number of M ¼ 2ðN
4
Þ

independent configurations.
In practice, the number Q of four-point resistances

actually measured is typically more than 3, and the
unknowns ρs, θ, and α are determined from a simple
variance minimization based on Eq. (1). Solving Eq. (1) to
define a parametric dependence of the sheet resistivity on
the transformation parameters ρs;kðθ; αÞ ¼ Rk/fkðθ; αÞ, the
normalized variance σ of the candidate sheet resistivities
can be written as a function of θ and α,

σðθ; αÞ ¼ 1

hρs;kðθ; αÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ
k¼1 ½ρs;kðθ; αÞ − hρs;kðθ; αÞi�2

Q

s
:

ð5Þ
The coordinates ðθ0; α0Þ that minimize this variance

reveal the unique solution for the crystallographic orienta-
tion θ0 and anisotropy scaling factor α0. The sheet
resistance is then the average value at the point of minimum
variance ρs;0 ¼ hρs;kðθ0; α0Þi. The final 2D anisotropic
resistivity tensor becomes ρcc ¼ α20ρs;0 and ρaa ¼ α−20 ρs;0.
The variance minimization C5C method was applied to

sample A [Fig. 1(d), inset], whose polygon approximation
was introduced above. Sample A is a d ¼ 31 nm thick
micromechanically exfoliated BP flake with sheet carrier
density p ¼ 1.77 × 1012 cm−2 measured at 300 K. The
resulting variance σðθ; αÞ of Q ¼ 10 different measured
contact configurations is shown in Fig. 1(e). Because the
variance σðθ;αÞ ¼ σðθ þ 180°;αÞ is periodic with period
180°, the minimum can be uniquely represented in a 2θ
polar plot whereby the graphical angle is twice the
anisotropy angle θ, and the isotropic condition α ¼ 1 is
at the polar center. The global minimum is observed at
θ0 ¼ 93° and α0 ¼ 0.85 yielding ρs;0 ¼ 11� 1 kΩ with
anisotropy ratio r ¼ ðρaa/ρccÞ ¼ α−40 ¼ 1.9. This result is
consistent with previous reported values on both bulk [27]
and thin flake BP devices [2,28].
Because sheet resistance in isotropic 2D samples is often

measured with the van der Pauw (vdP) technique, we
introduce a second, equivalent C5C method for measuring
anisotropic resistivity, which we call the vdP parametric
intersection method [Fig. 1(f)]. Consider two four-point
resistances Rk and Rk0 chosen such that k and k0 are vdP
pairs of measurement contacts, whereby the same four
contacts are used such as ABCD, but cyclically permuted
among the current and voltage contacts, such as k ¼
fAB;DCg and k0 ¼ fBC; ADg [26]. From the two resis-
tance measurements Rk and Rk0 , the standard vdP method
gives the value for the isotropic sheet resistivity ρs, which
for anisotropic samples represents the square-root-deter-
minant resistivity [23] and sets a parametric constraint on
αðθÞ. For example, Fig. 1(f) shows M ¼ Q/2 ¼ 5 different
parametric curves αðθÞ on a 2θ polar plot for the five
possible sets of four contacts. Wherever any two curves

intersect, a consistent solution of α and θ exists, and the
final solution is the average of (ρs, θ, α) at all intersections.
For sample A, the result is ρs;0 ¼ 11� 1 kΩ,
θ0 ¼ 93°� 3°, and α0 ¼ 0.85� 0.01, such that r ¼ 1.9�
0.1 in excellent agreement with the C5C variance-mini-
mization results. To confirm the conformal five-contact
methods in Fig. 2, we investigated an MoS2 device sample
C with thickness d ¼ 8 nm that is not expected to show
anisotropy. The result confirms a very weak anisotropy of
only α0 ¼ 0.99 and r ¼ α−40 ¼ 1.05, with the variance
minimum in the center of the radial plot, with degenerate
solutions of θ0 and a sheet resistivity ρs;0 ¼ 69 kΩ.
The anisotropy angle θ0 determined by the C5C method

in BP sample A [Fig. 3(a)] was independently verified
using polarized Raman spectroscopy [Fig. 3(b)]. Polarizing
the incident 532 nm laser parallel to the detector polari-
zation, the armchair (c axis) and zigzag (a axis) directions
of BP can be determined [17]. Raman measurements of the
BP flake were taken by rotating the material in 10˚
increments, generating polarization-dependent Raman
spectra. By fitting intensities of the A2

g spectra, [29] the
angle of minimum Raman intensity is θR ¼ 97°� 5°
[Fig. 3(c)], in agreement with the more accurate C5C
measurement of θ0 ¼ 93°� 3° [Fig. 3(a)]. Note that the
encapsulation of the BP flake with atomic layer deposited
alumina protects against accelerated degradation due to
laser irradiation, and that the laser wavelength was chosen
to be transparent to the alumina [30].
The utility of this method is illustrated by studying

temperature- and hole-density dependence on another BP

FIG. 2. Conformal five-contact method on the isotropic MoS2
sample C. (a) Inset photo: sample C in the lab frame overlaid with
polygon approximation; the main panel shows conformal map-
ping to the semi-infinite u-v plane. (b) C5C Variance minimi-
zation method: color plot of normalized variance σðα; θÞ [Eq. (3)]
on a 2θ polar plot with minimum variance at α0 ¼ 0.99
(r ¼ 1.05) at the center of polar plot, where ρs;0 ¼ 69 kΩ.
(c) C5C Parametric intersection method: shown are various
αðθÞ curves on a 2θ polar plot. Variance minimization results
in (b) agree with parametric intersection results in (c).
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sample (sample B) with thickness d ¼ 28 nm that has N ¼
6 contacts. Here Q ¼ 14 contact combination measure-
ments were chosen, since more measurements allow greater
redundancy in 4-point resistance measurements and greater
accuracy in anisotropy calibration. From these measure-
ments, the anisotropy angle is θ0 ¼ 68° at 300 K, agreeing
again with Raman spectroscopy (results not shown) within
�5°, and the anisotropy ratio is r ¼ 2.5 for sheet carrier
density p ¼ 4.78 × 1011 cm−2.

The temperature dependence of the anisotropy ratio was
studied by holding the hole density of sample B fixed at
p ¼ 2.0 × 1012 cm−2 with gate bias. As shown in Fig. 4(a),
both the a- and c-direction mobilities show positive power-
law increase in the low-temperature range up to 180 K,
saturating at high temperature. This behavior is consistent
with strong impurity scattering at low temperatures and the
onset of acoustic phonon scattering at high temperatures, as
reported in BP [2,31] and other 2D materials [32,33]. These
measurements reveal that the anisotropy ratio r increases
linearly as T is decreased, while the anisotropy angle θ0
remains constant [Fig. 4(d)]. The observed temperature trend
of the anisotropy ratio matches the prediction for remote-
ionized-impurity scattering (Ref. [34]). Interestingly,
Fig. 4(b) shows that the linearly decreasing trend continues
even as the experiment crosses over to the high-temperature
phonon-limited regime that theoretical studies have yet to
investigate.
Examining the gate-voltage dependence in sample B, the

mobility along the a and c directions is measured as a
function of sheet carrier density from p ¼ 5.3 × 1011 to
4.4 × 1012 cm−2, whereby mobilities in both directions
increase with increasing carrier density [Fig. 4(c)] consis-
tent with theoretical prediction [34,35]. The anisotropy
ratio itself decreases slightly as density increases, while the
angle of anisotropy θ0 remains constant [Fig. 4(d)]. This
observed decrease in anisotropy is consistent with theory
for this charged impurity-dominated regime, and the weak
dependence indicates that a prevailing number of the
impurities are within or close to the BP layer itself [34,35].
In conclusion, the conformal five-contact method

employs a conformal mapping method to enable all-
electrical determination of the in-plane crystallographic
orientation and full resistivity tensor in arbitrarily shaped
anisotropic 2D materials. Testing exfoliated BP and MoS2,
both variance minimization and vdP parametric intersection
methods are shown to yield consistent results. The utility of
the C5C method is demonstrated with temperature and

FIG. 3. Comparison between the anisotropy angle determined by the C5C method and polarized Raman spectrum on BP sample A.
(a) Crystal orientation determined by the C5C method in Fig. 1 is θ0 ¼ 93°� 3°. (b) Selected polarized Raman spectra on sample Awith
polarization angle rotating from 0° to 360°. (c) Radiii of black dots on the polar plot represent peak amplitudes for polarized Raman
intensities of the A2

g peak, with the black curve representing a theoretical fit. Resulting Raman crystal orientation angle is θR ¼ 97°� 5°
in agreement with more accurate θ0 from the C5C method.

FIG. 4. Anisotropy analysis on BP sample B (d ¼ 28 nm) as a
function of density and temperature. Curves are guides to the eye.
(a) Temperature dependence: at fixed density, carrier mobilities
μcc and μaa along the armchair and zigzag directions, respec-
tively, both increase with a power law in the low-temperature
range, before saturating at high temperatures, indicating the onset
of phonon scattering. (b) At fixed density, anisotropy angle θ0
(top panel) remains constant, and ratio r (bottom panel) decreases
linearly with temperature. (c) Density dependence: Carrier
mobilities μcc and μaa increase with increasing carrier density.
(d) Anisotropy angle θ0 (top panel) remains constant while the
anisotropy ratio r (bottom panel) decreases slightly with carrier
density.
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carrier density dependence of the anisotropy in exfoliated
BP. Since the C5C technique can be universally applied
without the strict geometric restrictions of other electrical
techniques or the material-specific knowledge required for
optical spectra interpretation, it can advance fundamental
studies and accelerate device development in the rapidly
growing field of anisotropic 2D materials.
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