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Topological phases of fermions in two dimensions are often characterized by chiral edge states. By
definition, these propagate in opposite directions at the two parallel edges when the sample geometry is that
of a rectangular strip. We introduce here a model which exhibits what we call “antichiral” edge modes.
These propagate in the same direction at both parallel edges of the strip and are compensated by
counterpropagating modes that reside in the bulk. General arguments and numerical simulations show that
backscattering is suppressed even when strong disorder is present in the system. We propose a feasible
experimental realization of a system showing such antichiral edge modes in transition metal dichalcogenide
monolayers.
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Introduction.—Topologically protected edge states in
two-dimensional (2D) fermionic systems occur in two
common varieties. Chiral edge modes are found in systems
with broken time-reversal symmetry such as the quantum
Hall or Haldane insulators [1,2]. In a strip geometry, the
bulk is gapped and the protected edge modes are counter-
propagating as illustrated in Fig. 1(a). Helical edge modes
occur in time-reversal-invariant systems, such as the 2D
quantum spin Hall effect (QSHE) [3,4], and can be
regarded as two superimposed copies of Haldane insulators
related by time-reversal symmetry. In this case, the bulk is
also gapped, and each edge contains a pair of counter-
propagating spin filtered states illustrated in Fig. 1(b). In
both cases, backscattering is suppressed exponentially with
the width W of the strip and leads to effectively dissipa-
tionless edge transport in the limit of largeW [5]. Such loss-
free transport has obvious technological potential and
underlies much of the current interest in topological states
of matter.
In this Letter, we ask the following question: Is it

possible to have a 2D fermionic system with copropagating
edge modes, illustrated in Fig. 1(c)? A simple consideration
shows that such “antichiral” edge modes cannot exist in a
system with a full bulk gap. This is because the number of
left- and right-moving modes in any finite system defined
on the lattice must be the same. Only then can one define a
legitimate band structure with full Brillouin zone periodic-
ity. We show, however, that antichiral edge modes indeed
can exist in 2D semimetals, where gapless bulk states
supply the required counterpropagating modes. The edge
modes are still topologically protected, much like Fermi
arcs in 3D Dirac and Weyl semimetals [6,7]. They also
carry nearly dissipationless currents, although the expo-
nential protection against backscattering is replaced by a

power law due to the extended nature of the counter-
propagating bulk modes.
A similar situation has been encountered recently [8–10]

in a 3D Weyl semimetal wire, where the energy dispersion
is modified such that conducting surface modes propagate
in one direction only and bulk modes propagate in the
other. In such a “topological coaxial cable,” backscattering
is strongly suppressed, because bulk and surface modes are
spatially separated. Reliable numerical simulations of this
system with disorder are, however, quite challenging owing
to its 3D nature. Here we construct a 2D system with
analogous physical properties in which numerical results
can be obtained up to very large sizes.
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FIG. 1. Schematic of a topological state with (a) chiral,
(b) helical, and (c) antichiral edge modes. Panel (d) illustrates
the low-energy dispersion of a zigzag graphene nanoribbon with
a dispersionless edge state (red) connecting two Dirac points.
Applying the pseudoscalar potential in (e) offsets the Dirac points
in energy and causes the edge mode to disperse.
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A system we consider in this Letter takes inspiration
from a graphene nanoribbon with zigzag edges [11]. It is
well known that such a nanoribbon exhibits dispersionless
edge states—zero-energy flat bands—that span projections
of two inequivalent Dirac points onto the 1D Brillouin zone
characterizing the ribbon [12–14] [Fig. 1(d)]. These edge
modes are topologically protected in a similar way as the
Fermi arcs in 3D Dirac and Weyl semimetals [15–17]. The
key idea is to add a pseudoscalar potential term to the
Hamiltonian H0 describing such a ribbon so that the two
Dirac points are shifted in energy in the opposite direction.
As a result, the edge modes acquire a dispersion [Fig. 1(e)],
which is now, crucially, the same for both edges. We thus
obtain a system with two copropagating edge modes
compensated by counterpropagating bulk modes.
Mathematically, the requisite pseudoscalar potential fol-
lows from a term that is similar to the Haldane mass [2] for
spinless fermions and describes a second-neighbor com-
plex hopping between sites. We show that a variant of such
a term is actually realized in transition metal dichalcoge-
nide monolayers when one includes spin.
Modified Haldane model.—We seek a term to add to the

graphene Hamiltonian which breaks time-reversal sym-
metry (T ) and acts as a scalar potential with an opposite
sign in each valley. In 1988, Haldane [2] introduced a
model realizing quantized Hall conductance without an
external magnetic field, defined by the Hamiltonian

H ¼ t1
X

hi;ji
c†i cj þ t2

X

⟪i;j⟫

e−ivijϕc†i cj; ð1Þ

where ci is an annihilation operator for a spinless fermion
on site Ri of the honeycomb lattice. The next-nearest-
neighbor (NNN) hopping breaks the T symmetry due to the
phase ϕ and is different when it links two A atoms or B
atoms [vij ¼ �1; see also the inset in Fig. 2(a)]. In the
continuum theory, the Hamiltonian can be rewritten as

H ¼ ℏvFðσxτzqx þ σyτ0qyÞ þ ta2σzτz þ tb2σ0τ0; ð2Þ

where vF is the Fermi velocity, σ and τ are the Pauli
matrices acting in the sublattice and valley spaces, respec-
tively, and q is the momentum relative to the Dirac points.
In addition, ta2 ¼ −3

ffiffiffi
3

p
t2 sinϕ, and tb2 ¼ −3t2 cosϕ. In

Fig. 2(a), we display the band structure of the Haldane
nanoribbon. When the Fermi energy EF lies close to zero
energy, it crosses the two edge states which connect the two
Dirac points. One edge mode is right moving and the other
left moving as expected of the chiral edge modes.
Importantly for our goal of constructing a pseudoscalar

perturbation, we observe in Eq. (2) that the Haldane term
ta2σzτz anticommutes with the rest of the Hamiltonian and
acts therefore as a mass term. If we were to modify this term
to act equally in both sublattices (i.e., replacing σz → σ0),
then it would commute with the rest of the Hamiltonian and

play the role of a pseudoscalar potential instead. On the
lattice, this can be achieved if we make the NNN hopping
term to act equally in both A and B sublattices; i.e., in
Eq. (1), we set vij ¼ þ1 for all sites [see the inset in
Fig. 2(a)]. With this change, the “modified Haldane model”
(MHM) at low energies becomes

H ¼ ℏvFðσxτzqx þ σyτ0qyÞ þ ta2σ0τz þ tb2σ0τ0: ð3Þ

The excitation spectrum reads

Eq ¼ �ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
þ ta2τz þ tb2; ð4Þ

showing that the two Dirac points are indeed offset in
energy by �ta2 as outlined in Fig. 1(e). On the basis of
arguments presented in the introduction, we expect that the
MHM should exhibit antichiral edge modes.
In Fig. 2(b), we display the band structure of the MHM.

The Dirac points are shifted in energy, and the edge modes
acquire dispersion with the same velocity; i.e., both edge
modes propagate in the same direction. We see also that the
Fermi energy crosses bulk modes, as it should because the
total number of left- and right-moving modes must be
the same. The important point is that these modes belong to
the bulk and are therefore spatially separated from the edge
modes. We therefore expect backscattering of the edge

(a)

(b)

FIG. 2. Band structure of a zigzag nanoribbon (ZGNR) of
width W ¼ 60 (60 ZGNR) described by the (a) Haldane and
(b) modified Haldane Hamiltonian. t1 is taken as the unit of
energy, t2 ¼ 0.03, and ϕ ¼ π/2. The insets show the pattern of
phases for the NNN hopping terms.
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modes to be strongly suppressed. An electron in the edge
that suffers a collision with an impurity cannot backscatter
unless it moves to the bulk.
Results.—In pristine graphene, the zigzag edge zero

modes are protected by the chiral symmetry C:
σzH0σz ¼ −H0, which allows a topological winding num-
ber to be defined [15,16]. We review this topological
protection in Supplemental Material [18] and show that
it applies to the modified Haldane model as well. In
essence, because the MHM term is proportional to the
unit matrix in the sublattice space, it does not modify the
spinor structure of the wave functions compared to the
pristine case (although it does change their energies). Since
the topology is encoded in the wave functions, we expect
the edge modes to persist, except that they may now occur
away from zero energy. This indeed is seen in Fig. 2(b).
To demonstrate the extreme robustness of the antichiral

edge modes in the MHM against disorder, we compute
[23,24] the conductance G as a function of the length L of
the ribbon for different impurity concentrations nI . We
consider a system depicted in Fig. 3(a), where the black part
corresponds to the active region with disorder and the red
part represents the contacts. Impurities are introduced as
on-site potentials, whose energy value is randomly chosen
in the interval ½−U;U�. Simulations are repeated for
different impurity configurations, and the conductance is
averaged over these. Impurity concentration nI is expressed
as the number of defected sites divided by the total number
of atoms in the system.
In Fig. 3(b), we plot the conductance as a function of the

length of the ribbon. For a clean sample (nI ¼ 0), the
conductance (in units of e2/h) equals to 4, independently of
the length of the system. This can be explained by noting
that for the adopted parameters EF crosses two right-
moving bulk modes in addition to two right-moving edge
modes. When disorder is introduced, we observe an initial
fast drop in conductance with L. We interpret this as
Anderson localization [25,26] of the bulk modes. However,
contrary to the ordinary zigzag nanoribbon, where the
conductance drops to zero [27], in the MHM the conduct-
ance reaches the value of 2 and then remains essentially
constant even for very long ribbons and very high values of
disorder. This occurs because two edge modes (and two
counterpropagating bulk modes) remain delocalized and
continue exhibiting ballistic transport. We emphasize that
these modes are extremely robust. For instance, for nI ¼
0.6 corresponding to very strong disorder with 60% of sites
containing defects (far higher than disorder levels in
realistic graphene samples [14]) and L ¼ 1500, the con-
ductance decreases only by about 5%.
These results suggest that the MHM can be characterized

by two localization lengths, one for the bulk modes, which
we define as λ−1b ¼ d lnðG − 2Þ/dLjL<λb , and one for the
edge modes, λ−1e ¼ d lnðGÞ/dLjL>λb

. From Fig. 3(b), we
can estimate both localization lengths. We find that values

obtained for λb are similar to localization length results
found in the literature for similar systems [27], while λe is
much longer, expressing the fact that the edge modes are
extremely difficult to localize.
To elucidate the anomalously long localization length of

the edge states, we performed some analytical calculations.
We expect these edge states to exponentially decay into
the bulk, with the wave function of the form ψeðrÞ≃
eikx−y/ξ/

ffiffiffiffiffiffi
ξL

p
. If we assume that the counterpropagating

bulk states are roughly constant throughout the sample with
ψbðrÞ ≃ e−ikx/

ffiffiffiffiffiffiffiffi
WL

p
, it is easy to obtain an expression for

the elastic scattering rate ℏ/τ ¼ nIðξa4u20/2vℏW2Þ. Here a
is the lattice constant, u0 is the average impurity potential
strength, v is the velocity, and ξ is the typical decay length
for the edge states. The localization length in one dimen-
sion is λe ¼ πl, where l ¼ vτ is the mean free path. We
obtain

λe ¼
2v2ℏ2W2π

nIξa4u20
: ð5Þ

(a)

(b)

(c) (d)

FIG. 3. (a) Zigzag nanoribbon structure used in the numerical
simulations. (b) Conductance as a function of L for W ¼ 60,
U ¼ 2.5, and EF set close to zero. Different disorder concen-
trations are depicted. Inset: Inverse edge state localization length
λe estimated from the decay in conductance GðLÞ ≃ 2ð1 − L/λeÞ
in the regime λb ≪ L ≪ λe. We checked that the conductance is
the same when the current flows from left to right and vice versa,
as required by conductance reciprocity. (c) Local current density
(LCD) of a 120 ZGNR and L ¼ 300 for EF close to zero when
nI ¼ 0.1. (d) Average of the LCD in the x direction of (c) as a
function of the width of the ribbon.
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The inset in Fig. 3(b) confirms the expected dependence of
λe on the impurity concentration nI. The expected depend-
ence on widthW is, however, not borne out; we find that the
last remaining counterpropagating bulk states are not fully
extended over the width of the sample but are instead
concentrated along the edges with a characteristic length
scale ξ0 ≫ ξ. This is illustrated in Figs. 3(c) and 3(d). The
expression Eq. (5) thus holds if we replace W → ξ0,
producing a long localization length, which, however, does
not diverge in the limit of a wide strip. At present, we do not
fully understand the origin of the length scale ξ0, but we
note that it may herald interesting new physics in systems
with antichiral edge modes to be explored in future studies.
Proposed experimental realizations.—The direct exper-

imental realization of our model faces the same challenges
as the Haldane model, which has only recently been
realized using ultracold atoms in an optical lattice [28].
The same method could be used to realize the modified
Haldane model. We also note a recent proposal invoking an
iron-based ferromagnetic insulator lattice [29].
Another route is based on the idea advanced by Kane and

Mele [3], who noted that NNN tunneling amplitudes of the
type required by the Haldane model can be supplied by
spin-orbit coupling (SOC), creating effectively two copies
of the HM for two projections of the electron spin,
conjugate under T . SOC is intrinsically very weak in
graphene, but the QSHE was experimentally realized in
HgTe quantum wells [30]. Our strategy, therefore, is to
generalize the model to spinful fermions with SOC and
obtain two copies of the MHM conjugate under T . In
contrast to the HM, our model intrinsically breaks the
inversion symmetry; therefore, we have to include SOC in a
noncentrosymmetric system. For that reason, hexagonal
transition metal dichalcogenide (TMD) monolayers MX2

are excellent candidates. In their monolayer form, the
M ¼ W, Mo atom is sandwiched between two X ¼ S,
Se, Te atoms with D1

3h crystal structure [31]. TMDs have a
similar band structure to graphene, with two nonequivalent
Dirac points in the corners of the Brillouin zone but with a
band gap due to the hybridization of the d orbitals [32] and
with stronger SOC, since they are composed of heavy
elements [33]. Xiao et al. [34] proposed a low-energy
Hamiltonian for these materials and predicted selection
rules for optical interband transitions, which have been
tested experimentally [35–37]. The Hamiltonian is

H ¼ ℏvFðσxτzqx þ σyτ0qyÞ − λτz
σz − σ0

2
sz þ σzmS; ð6Þ

where λ is the SOC parameter and sz represents the spin.
We observe that in each spin sector SOC produces the
desired pseudoscalar term proportional to τzσ0 in addition
to the Haldane term τzσz and the inversion symmetry-
breaking “Semenoff mass” mS. It is easy to construct the
lattice version of Eq. (6) and compute the band structure.
For the spin-up electrons, this is displayed in Fig. 4(a) (the

spin-down band structure is the same but reversed in
momentum around the origin of the BZ). For the simu-
lation, we chose M ¼ W and X ¼ Se, since WSe2 has the
strongest SOC of all TMD monolayers [38].
There are some obvious differences between Fig. 4(a)

and the ideal MHM band structure in Fig. 2(b). Most
importantly, WSe2 exhibits a full bulk band gap, whereas
theMHM remains gapless. Nevertheless, WSe2 shows edge
modes that may be regarded as descendants of those in the
MHM. Indeed, it is easy to see that one can evolve the band
structure in Fig. 2(b) into Fig. 4(a) by gradually turning on
the Haldane and Semenoff mass parameters. This illustrates
the robustness of the topological protection even with C
strongly broken. If the Fermi energy crosses the WSe2 edge
mode in the valence band, similarly to our model, a current
will flow along one edge of the sample with the counter-
current returning through the bulk. In this sense, the WSe2
zigzag nanoribbon realizes the physics of the antichiral
edge modes, and we expect them to be robust against
disorder. Figure 4(b) shows the conductance as a function
of EF for WSe2. We find that disorder quickly localizes all
the bulk modes and only the edge mode survives, leading to
conductance close to e2/h. Interestingly, the edge currents
in WSe2 are spin polarized, which could be useful in
spintronic applications.

(a)

(b)

FIG. 4. (a) WSe2 band structure for a 60 ZGNR and L ¼ 300.
Parameters used for the simulation are t ¼ 1.19 eV,
mS ¼ 0.8 eV, and λ ¼ 0.23 eV. (b) Conductance for the interval
of energies where the edge state exists in the valence band. The
blue solid line corresponds to a clean sample, while the red
dashed line to a system with nI ¼ 0.1.
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Conclusions.—We discussed 2D systems where nearly
dissipationless currents occur because left- and right-mov-
ing modes are segregated to the edges and the bulk of the
sample, respectively. For that reason, backscattering is
suppressed, even for samples with high impurity concen-
trations. A simple system showing this behavior can be
constructed by slightly modifying the well-known Haldane
model [2]. A variant of this model (for spinful fermions) is
approximately realized in TMDmonolayers and can be used
to experimentally test the physics of antichiral edge modes.

We thank NSERC, CIfAR, and Max Planck-UBC Centre
for Quantum Materials for support. E. C. acknowledges
funding from Fondo Europeo de Desarrollo Regional
(FEDER), the “Ministerio de Ciencia e Innovación”
through the Spanish Project TEC2015-67462-C2-1-R,
the Generalitat de Catalunya (SGR-384), and from the
EU’s Horizon 2020 research program under Grant
Agreement No. 696656.

*enrique.colomes@uab.es
†franz@phas.ubc.ca

[1] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[2] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[5] For helical edge states, unbroken time-reversal symmetry

and negligible interaction strength must be maintained to
achieve dissipationless transport.

[6] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Phys. Rev. B 83, 205101 (2011).

[7] O. Vafek and A. Vishwanath, Annu. Rev. Condens. Matter
Phys. 5, 83 (2014).

[8] T. Schuster, T. Iadecola, C. Chamon, R. Jackiw, and S. Y. Pi,
Phys. Rev. B 94, 115110 (2016).

[9] D. I. Pikulin, A. Chen, and M. Franz, Phys. Rev. X 6,
041021 (2016).

[10] P. Baireuther, J. A. Hutasoit, J. Tworzydo, and C.W. J.
Beenakker, New J. Phys. 18, 045009 (2016).

[11] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[12] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J.

Phys. Soc. Jpn. 65, 1920 (1996).
[13] K. Wakabayashi and M. Sigrist, Phys. Rev. Lett. 84, 3390

(2000).
[14] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[15] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002
(2002).

[16] P. Delplace, D. Ullmo, and G. Montambaux, Phys. Rev. B
84, 195452 (2011).

[17] M. Kharitonov, J.-B. Mayer, and E. M. Hankiewicz, Phys.
Rev. Lett. 119, 266402 (2017).

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.086603 for clarify-
ing the topological protection of the zigzag edges modes,
which includes Refs. [15–17,19–22].

[19] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).

[20] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[21] See, e.g., C. L. Kane, in Topological Insulators, edited by

M. Franz and L. Molenkamp (Elsevier, Oxford, 2013).
[22] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.

42, 1698 (1979).
[23] Numerical simulations were performed with the Kwant

tight-binding code.
[24] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,

New J. Phys. 16, 063065 (2014).
[25] A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys.

Today 62, No. 8, 24 (2009).
[26] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[27] I. Kleftogiannis, I. Amanatidis, and V. A. Gopar, Phys. Rev.

B 88, 205414 (2013).
[28] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.

Uehlinger, D. Greif, and T Esslinger, Nature (London)
515, 237 (2014).

[29] H. Kim and H. Kee, npj Quantum Mater. 2, 20 (2017).
[30] M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[31] J. Ribeiro-Soares, R. M. Almeida, E. B. Barros, P. T. Araujo,
M. S. Dresselhaus, L. G. Cancado, and A. Jorio, Phys. Rev.
B 90, 115438 (2014).

[32] L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
[33] J. A. Reyes-Retana and F. Cervantes-Sodi, Sci. Rep. 6,

24093 (2016).
[34] D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).
[35] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nano-

technol. 7, 494 (2012).
[36] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat.

Nanotechnol. 7, 490 (2012).
[37] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P.

Tan, E. Wang, B. Liu, and J. Feng, Nat. Commun. 3, 887
(2012).

[38] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Phys.
Rev. B 84, 153402 (2011).

PHYSICAL REVIEW LETTERS 120, 086603 (2018)

086603-5

https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1103/PhysRevB.94.115110
https://doi.org/10.1103/PhysRevX.6.041021
https://doi.org/10.1103/PhysRevX.6.041021
https://doi.org/10.1088/1367-2630/18/4/045009
https://doi.org/10.1038/nmat1849
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1103/PhysRevLett.84.3390
https://doi.org/10.1103/PhysRevLett.84.3390
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevLett.89.077002
https://doi.org/10.1103/PhysRevLett.89.077002
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevLett.119.266402
https://doi.org/10.1103/PhysRevLett.119.266402
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.086603
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.88.205414
https://doi.org/10.1103/PhysRevB.88.205414
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/s41535-017-0021-z
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevB.90.115438
https://doi.org/10.1103/PhysRevB.90.115438
https://doi.org/10.1103/PhysRevB.8.3719
https://doi.org/10.1038/srep24093
https://doi.org/10.1038/srep24093
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1103/PhysRevB.84.153402
https://doi.org/10.1103/PhysRevB.84.153402

