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We develop the quantum hydrodynamics of inner waves in the bulk of fractional quantum Hall states. We
show that the inelastic light scattering by inner waves is a sole effect of the gravitational anomaly. We
obtain the formula for the oscillator strength or mean energy of optical absorption expressed solely in terms
of an independently measurable static structure factor. The formula does not explicitly depend on a model
interaction potential.
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Introduction.—Excitations in the bulk of a fractional
quantum Hall (FQH) state are neutral modes of density
modulations. These modes are generally gapped. Evidence
of collective modes was seen in inelastic light scattering
[1,2]. The numerically obtained spectrum of small systems
[3,4] also shows a dispersive branch of a collective
excitation.
The experimental accessibility of the dispersion of

neutral modes of FQH states calls for a better under-
standing of inner waves. There is a renewed interest in the
subject. Some recent papers are in Ref. [5].
Here we show that inelastic light scattering by inner FQH

waves is a sole effect of the gravitational anomaly. This
observation gives a geometric interpretation to inner waves
and also a new formula for the “oscillation strength” of
optical absorption Δk.
The gravitational anomaly only recently entered the

quantum Hall effect (QHE) literature (e.g., Ref. [6]). It
is an elusive phenomenon which appeared as a higher-order
gradient correction to bulk transport coefficients [7]. What
would be the clean, experimentally accessible bulk effects
of the gravitational anomaly? We argue that the gravita-
tional anomaly governs one of the major observables in
FQH, the inelastic light scattering.
A natural approach to studying inner waves is hydro-

dynamics. It goes back to the seminal paper [9] by Girvin,
MacDonald, and Platzman (GMP). Our analysis is based on
more recent development of FQH hydrodynamics [10] (see
also [11]). As the GMP theory, the recent hydrodynamics
approach has roots in a similarity between FQH states and a
superfluid, but with the essential addition that the super-
fluid is rotating and incompressible.
We briefly describe the central point of this Letter.

The correspondence [10] between the FQHE and a super-
fluid identifies electrons with quantized vortices in a fast
rotating incompressible superfluid. Such hydrodynamics
can be reformulated as the Helmholtz law (see, e.g., [12]):

Vortices of an incompressible flow are frozen (or passively
dragged by) the flow. Since vortices represent electrons,
they could be probed by light. Then, the Helmholtz law
forbids inelastic light scattering. Being perturbed by light,
vortices instantaneously change the flow and remain frozen
into a new flow. They cannot accelerate against the flow.
Our main observation is that the quantization subtly

corrects the Helmholtz law through the gravitational
anomaly. The inelastic light scattering is the effect of this
correction.
The gravitational anomaly comes to the stage to prevent

a quantization scheme from violating diffeomorphism
invariance, the relabeling symmetry of the fluid. It is quite
remarkable that optical probes directly test this fundamen-
tal symmetry.
The hydrodynamic description of inner FQHE waves

faces a long-standing problem of the quantizing of incom-
pressible hydrodynamics, specifically the flows with an
extensive vorticity, the chiral flows. Accounting for the
gravitational anomaly described below represents perhaps
the first consistent quantization of incompressible flows,
whose applications go beyond the QHE.
Before we proceed, an important comment about the

spectrum of incompressible waves is in order. The GMP
theory [9] adopted a variational approach initially devel-
oped by Feynman for the superfluid helium [13]. The GMP
approach assumes that a certain two-body Hamiltonian
H ¼ P

qVqρqρ−q, where ρq is the electronic density
mode, indeed delivers a FQH state. Then it assumes that
excitations include a single-mode density modulation
jki ¼ ρkj0i and interprets the diagonal matrix element of
the Hamiltonian Δk ¼ ðhkjHjki=hkjkiÞ as a variational
approximation to the excitation spectrum. The net result
is expressed in terms of a model potential Vq.
Such an approach is justified for compressible fluids,

like helium, where atomic density modulation is a linear
wave. In this case, a single-mode jki ¼ ρkj0i is a long-lived
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state. Contrary to GMP’s major assumption, a single-
mode state does not approximate a long-lived excitation
of incompressible fluids, such as of the FQHE. A reason for
it is that incompressible waves are essentially nonlinear.
A single-mode state decays into multiple modes and
does not have a spectrum, and Δk has no direct relation
to true excitations, as it seems commonly accepted in the
literature.
Still, we argue that Δk could be measured in optical

absorption and give a new formula for Δk in terms of the
structure factor. It refines the GMP formula which
expresses Δk in terms of model potential Vq.
Correspondence between FQH states and fast rotating

superfluid.—The analogy between Laughlin’s states and a
superfluid was suggested in Refs. [9,11] and developed to
a correspondence in Ref. [10]. In short, a drift of vortices in
a fast rotating superfluid and a motion of electrons in the
FQH regime are governed by the same equations.
Fast rotating superfluid is a dense media of same sense

vortices with a quantized circulation, which we denote by
2πΓ. The total vorticity of the fluid is compensated by a
solid rotation with a frequency Ω, such that the mean
density of vortices is ρ0 ¼ Ω=ðπΓÞ. We assume that
the vortices are in a liquid phase (do not crystallize).
The frequency of rotation Ω corresponds to the Larmor
frequency Ω ¼ eB=2m� with an effective mass m�. The
“mass” is the only phenomenological parameter of the
theory determined by the spectral gap. Its energy scale is
the Coulomb interaction ℏΩ ∼ e2=l, where l ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

is
the magnetic length. Then vortices correspond to electrons
if the vortex circulation in units of ℏ=m� is the inverse of
the filling fraction and the gap in the spectrum is of the
order of ℏΩ:

Γ ¼
�

ℏ
m�

�
ν−1; Ω ¼ eB

2m�
: ð1Þ

This correspondence differs from that of GMP [9]. The
authors of Ref. [9] referred to the work of Feynman [13],
who considered atomic density modes of a compressible
superfluid at rest. Rather, we discuss the modes of vorticity
of a rotating incompressible superfluid [14].
We will measure the distance in units of magnetic

length and the energy (the bulk gap) in units of the
2ℏΩ, setting l ¼ ℏ ¼ m� ¼ 1. In these units, the mean
density ρ0 ¼ 1=ð2πΓÞ ¼ ν=2π.
Helmholtz law.—The hydrodynamics of a 2D incom-

pressible flow can be cast in the Helmholtz form: The
material derivative of vorticity vanishes. If u ¼ ðux; uyÞ is
the velocity of a flow, ω ¼ ∇ × u is the vorticity, Dt ¼∂t þ u · ∇ is the material derivative, and the fluid is
incompressible ∇ · u ¼ 0, then the Euler equation in the
Helmholtz form reads

Dtω ¼ 0: ð2Þ

In the context of FQH, vorticity is identified with the
electronic density. In a rotating frame with no net vorticity,
the correspondence reads

ρðrÞ ¼ ρ0 þ
1

2πΓ
ωðrÞ: ð3Þ

The velocity of the flow u does not have a measurable
analog in the FQHE. It could be thought as a transversal
part of the fictitious gauge field attaching a flux of magnetic
field to electrons.
It is quite remarkable that essential features of Laughlin’s

states are encapsulated in the quantum Helmholtz equation.
We will see some of it now.
The Helmholtz law reflects a geometric meaning of

hydrodynamics: Incompressible flows are generated by a
successive action of volume-preserving diffeomorphisms.
In the QHE, this concept has been suggested in Ref. [15].
Therefore, FQH inner waves and the equivalent problem
of a quantum hydrodynamics both are seen as a problem of
the quantization of the group of volume-preserving diffeo-
morphisms. This group is generated by density mode
operators ρ̄k ¼

R
e−ik·rρ̄ðrÞd2r, with the algebra

½ρ̄k; ρ̄k0 � ¼ iekk0 ρ̄kþk0 ; ð4Þ

with the structure constants ekk0 ¼ k × k0. On the torus,
they are ekk0 ¼ 2e1=2ðk·k0Þ sin½ð1=2Þk × k0�. Here we used a
bar to emphasize quantization as in Ref. [9]. The classical
limit of (4) is the Poisson brackets of hydrodynamics [16].
Nonlinear waves.—A few important properties already

follow from (2). A well-known fact is that the 2D incom-
pressible hydrodynamics does not assume linear waves. In
the language of the quantum theory, this means that single
density modes are not long-lived states.
However, the Euler equation can be linearized about an

inhomogeneous background. Example are Tkachenko lin-
ear modes of a vortex crystal [17]. If we impose a periodic
density modulation jk0i, then on top of it there are linear
waves ρ̄q−k0 jk0i ¼ ρ̄q−k0 ρ̄k0 j0i. This suggests that, in con-
trast to a single mode, the two-mode states do have a
spectrum. This assertion agrees with the interpretation of
the inelastic light scattering experiments of Pinczuk et al.
[1] as a Raman type two-modes processes by Platzman and
He [4]. We address the spectrum of inner waves elsewhere.
Another consequence mentioned already is that the

Helmholtz law prohibits the absorption of light. We show
how this problem is resolved by the quantization.
Quantization of Euler equation.—Quantization of the

Euler equation meets essential difficulties. The advection
term u ·∇ω ¼ ∇ðu · ωÞ where two operators sit at the
same point requires a regularization. The problem in a
general setting has a long history of failures and is
commonly considered nearly impossible. A scheme of
regularization where points are split u½rþ ðϵ=2Þ�ω½r −
ðϵ=2Þ� leads to inconsistencies. The difficulty is that the
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point-splitting distance itself depends on the flow ϵ½u�.
Hence, a regularization scheme is specific to the flow and
cannot be practical to all varieties of flows at once.
However, if the flow consists of a dense media of vortices,
the chiral flow, quantization could be achieved. In this case,
a variable short-distance cutoff is the distance between
vortices ϵ ∼ 1=

ffiffiffi
ρ

p
.

We will use the complex notations. We denote the
complex velocity by uz ¼ ux − iuy and use the stream
function ψ and the traceless part of the fluid momentum
flux tensor Πij ¼ uiuj − ð1=2Þδiju2. In complex coordi-
nates, uz ¼ 2i∂zψ and Πzz ¼ uzuz. We will write the
advection term as

u · ∇ω ¼ i½∂2
zΠz̄ z̄ − ∂2

z̄Πzz�: ð5Þ

Hence, we have to give a quantum meaning to u2z . For that,
we recall a notion of the projected density operator.
Normal ordering and quantization.—States on the

lowest Landau level (LLL), and also flows of rotating
superfluid, are realized as Bargmann space [9,18]. It is a
space of holomorphic functions with the inner product
hgjfi ¼ R

e−ð1=2Þjzj2g�ðz̄ÞfðzÞdzdz̄. The density operators
acting in the Bargmann space obeying the algebra (4)
are realized by the normally ordered operator ρ̄k ¼P

ie
−ði=2Þkz†i e−ði=2Þk̄zi , where k is a complex wave vector

and z†i ¼ 2∂zi . GMP called it a projected (onto LLL)
density operator. It is organized such that a state jki ¼
ρ̄kj0i is holomorphic and, hence, belongs to LLL. It is also
chiral ρ̄†k ¼ ρ̄−k. Similarly, the two-mode operator that
entered the momentum flux tensor on the Bargmann space
is represented by a normal ordered string:

ρkρk0 ¼
X
i;j

e−ði=2Þkz
†
i e−ði=2Þk

0z†j e−ði=2Þk�zie−ði=2Þk0�zj : ð6Þ

The projected density modes generate coherent states
of LLL and also states of rotating superfluid if zi is a
coordinate of a vortex.
We denote the Wick contraction ⎴AB ¼ AB − Ā B̄ and

compute ⎴uzuz. The contraction of two density modes
follows from (6):

⎴ρkρk0 ¼ ρ̄kþk0 ð1 − e
1
2
k·k0 Þ: ð7Þ

The next step is to express the momentum flux tensor
on the Bargmann space through the generators ρ̄k. We get
insight by computing it for the ground state where the
density is uniform ρk ¼ Nδk0 and there is no flow.
Equivalently, the contraction of two stream functions is

ψðrÞψ ðr0Þ ¼ 2π

ν

Z
eik·ðr−r0Þ

�
1 − e−ð1=2Þk2

k4

�
d2k
ð2πÞ2 : ð8Þ

Now we can compute uzðrÞuzðr0Þ ¼ −4∂z∂z0ψðrÞψ ðr0Þ.
In the hydrodynamic limit (jr − r0j ≫ l), uzðrÞuzðr0Þ∼
ðz − z0Þ−2. As r → r0, the net result is zero due to the
rotational symmetry. The effect of short-distance regulari-
zation does not show up.
Gravitational anomaly in hydrodynamics.—Now we

extend these calculations when u2z is sandwiched between
two flow states with a nonuniform density. In this case, the
cutoff as ε½u� is nonuniform. The result follows from the
geometric interpretation of the fluid flow. In this picture,
the distance between particles (vortices) is interpreted as a
metric ds2 ¼ ρjdzj2 of an auxiliary evolving Riemann
surface. The scalar curvature of this surface is

R ¼ −4ρ−1∂z∂ z̄ log ρ: ð9Þ

The distance between particles is invariant under a
change of coordinates or by relabeling particles. In hydro-
dynamics, this fictitious symmetry is typically applied to
fluid atoms. In our approach, it is a relabeling symmetry of
vortices. We want to keep it in quantization.
To proceed, we notice that in the hydrodynamic limit the

contraction of stream functions (8) is the Green function of
the Laplace operator

ψðrÞψ ðr0Þ ¼ π

ν
Gðr; r0Þ: ð10Þ

It is natural to assume that in a flow state the contraction is
the Green function of the Laplace-Beltrami operator in the
metric ρjdzj2. Then the problem is reduced to a covariant
regularization of the Green function as r → r0. Such a
regularization identifies the short-distance cutoff with the
geodesic distance dðr; r0Þ. With this prescription, we
define the Wick contraction of the momentum flux tensor
Πzz ¼ u2z as a limit:

⎴uzuz ¼
4π

ν
lim
r→r0

∂z∂z0

�
Gðr; r0Þ þ 1

2π
log dðr; r0Þ

�
: ð11Þ

The result of this limit is known: It is the Schwarzian of the
metric (Supplemented Material [19])

⎴uzuz ¼
1

6ν

�
∂2
z log ρ −

1

2
ð∂z log ρÞ2

�
: ð12Þ

Then the contraction of the advection term (5) is expressed
through the curvature (9)

u · ∇ω ¼ 1

96π
∇R × ∇ω: ð13Þ

This is the main result of the quantization [20]. We can now
treat the hydrodynamics as a field theory, with a constant
cutoff, independent of the flow. With the help of (13), we
obtain
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Dtρ̄ ¼ 1

96π
∇R × ∇ρ̄: ð14Þ

If waves are small and long,R ≈ −ρ−20 Δρ, the correction
to the Helmholtz law could be treated in the harmonic and
long-wave approximation:

Dtρ̄k ¼
π

24ν2
X
q

q2ðk × qÞρ̄qρ̄k−q: ð15Þ

Deviation from Helmholtz law.—The implication of
quantum corrections is that the Helmholtz law held for
quantum operators does not hold for their matrix elements:
The material derivative for the projected density mode (14)
does not vanish. Acceleration of particles against the flow
appears as quantum corrections, but, as we will see, it is the
only source for the light scattering. The universal departure
from the Helmholtz law is our main result.
Hamiltonian.—Nowwe are in a position to determine the

Hamiltonian which together with the brackets (4) yields
Eq. (14). Here we present the result, leaving calculations to
Supplemental Material [19].
We write the Hamiltonian in terms of mean density of

the flow, denoting it also by ρ. Separating classical and
quantum contribution H ¼ R ðH − ℏSÞρ0d2r and restoring
units we obtain

H ¼ m�
2
ðu2 þ 2u · u0 − πΓ2ρ log ρÞ; ð16Þ

S ¼ −πΓ
�
ρ log ρþ 1

96π
ð∇ log ρÞ2

�
: ð17Þ

The first two terms in the classical part (16) are the
kinetic and centrifugal energies, ∇ × u0 ¼ 2Ω. The last
term in (16) regularizes the divergency of the kinetic energy
at vortex cores. It was known in the theory of superfluid
since the 1961 paper of Kemoklidze and Khalatnikov [21];
see, also, recent Ref. [22]. This term is the Casimir
invariant, whose Poisson bracket with all local fields
vanishes. It does not show in equations of motion (14)
but enters the current [Eq. (3) of [19]] as a divergence-
free term.
The quantum part (17) also consists of two terms. The

first term is a quantum correction to the Kemoklidze-
Khalatnikov term. The second term represents the effect of
the gravitational anomaly.
Static structure factor.—Now we check that the

Helmholtz equation (2) and its consequences (14)–(17)
encode the independently known long wave expansion
of the static structure factor sk ¼ ð1=NÞh0jρ−kρkj0i. This
check justifies the hydrodynamic approach.
According to the theory of linear response, the structure

factor appears in the harmonic approximation of the
Hamiltonian as a rigidity of density modes (see [19]):

H ≈
1

2N

X
q≠0

s−1q ρ−qρq: ð18Þ

We compute the inverse structure factor by expanding
(16) and (17). The result is

s−1q ¼ 2

q2
−
�
1

2ν
− 1

�
þ ½s−1q �þ; ð19Þ

where ½s−1q �þ is the part of the expansion which consists of
positive powers of q. The leading term in ½s−1q �þ followed
from the last term in (17) is the effect of the gravitational
anomaly:

½s−1q �þ ¼ q2

24ν
þOðq4Þ: ð20Þ

Inverting (19), we obtain the first three terms of the small q
expansion of the structure factor

sq ¼
q2

2
þ q4

8ν
ð1 − 2νÞ þ q6

8ν2

�
3

4
− ν

��
1

3
− ν

�
þ : ð21Þ

Each of the three terms in (21) is independently known,
has a universal meaning, and reflects symmetries of the
electronic fluid. The term q2 corresponds to the kinetic
energy 1

2
u2, q4 corresponds to the ρ log ρ term in (16) and

(17) and is referred as the “compressibility” sum rule.
Finally, the q6 term represents the gravitational anomaly. It
was first obtained in Ref. [23] directly from Laughlin’s
wave function. In equivalent forms, it appeared in Ref. [24].
There is no reason to think that higher terms, but the first
three, are universal.
Using (21), we obtain the projected structure factor

s̄k ¼
1

N
h0jρ̄−kρ̄kj0i.

From (7), we have s̄q ¼ sq − ð1 − e−ð1=2Þq2Þ. Hence,

s̄q ¼ ð1 − νÞ q
4

8ν

�
1þ 1

6ν
ð3 − 10νÞq2

�
þ � � � : ð22Þ

Harmonic approximation.—We can now express the
correction to the Helmholtz law in terms of the structure
factor. Let us compute ½H; ρ̄k� with the Hamiltonian (18).
The first term in the expansion of s−1q (19) gives the material
derivative, and the second does not contribute. The cor-
rection to the Helmholtz law is due to the positive part of
the expansion (19), whose leading term is the gravitational
anomaly (20). We obtain a refine form of the Eq. (15) valid
at all k:

Dtρ̄k ¼
π

ν

X
q

ekq½s−1q �þρ̄qρ̄k−q: ð23Þ
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Optical absorption by nonlinear waves.—Absorption
occurs when light accelerates particles against the flow,
i.e., due to a departure from the Helmholtz law.
Consider an acoustic wave imposed through the Hall bar

as in an experiment [2]. It creates a state jki ¼ ρ̄kj0i. In
solids, the optical absorption measures the differential
intensity SkðωÞ ¼ ð1=NÞhkjδðH − ℏωÞjki and the inte-
grated intensity s̄k ¼ ℏ

R
SkðωÞdω ¼ ð1=NÞhkjki, the pro-

jected static structure factor. Another object of interest is
the oscillation strength, the first moment of the intensity

f̄k ¼
Z

ωSkðωÞdω ¼ 1

N
hkjHjki ¼ i

2N
h0j _̄ρkρ̄−kj0i ð24Þ

and the mean energy Δk ¼ f̄k=s̄k ¼ hkjHjki=hkjki.
In fluids, intensity must be written in a coordinate system

moving with the fluid. This means that the time derivative
in (24) is the material derivative

f̄k ¼
1

2Ni
h0j½Dtρ̄k; ρ̄−k�j0i: ð25Þ

Hence, only the rhs of (23) enters (25).
Typically, SkðωÞ features an asymmetric peak supported

by the curve ℏω ¼ Δk, rudimentarily interpreted as a
spectrum of excitations. Such an interpretation will be
valid, would ρ̄kj0i be a long-lived state, as happens in a
compressible fluid. As we commented above, in the FQHE,
the state ρ̄kj0i is short-lived.
Interpretation aside, we compute f̄k. Equation (23)

reduces (25) to h0jρ̄−kρ̄qρ̄k−qj0i, which we compute with
the help of the algebra (4). We express the result in terms of
~sk ¼ ð1 − νÞ−1ek2=2s̄k and in units ℏ2=ðπm�l2Þ and use the
structure constants (4) for the torus:

Δk ¼ ~s−1k

Z
sin2

�
1

2
k × q

�
e−ðq2=2Þ½s−1q �þð~sq − ~sk−qÞd2q:

Contrary to (4.15) of Ref. [9], our formula does not
explicitly depend on a model interaction. It is expressed
only through an independently measured structure factor.
We emphasize that beyond terms in (22) the structure factor
depends on details of the material and so as the mean
energy Δk.
Magnetoroton minimum.—Both f̄k and s̄k and their ratio

Δk feature a broad asymmetric peak at kl ∼ 1.
At k → 0, ~sk ∼ ðk4=8νÞ and ½s−1k �þ ∼ ðk2=24νÞ. At

k → ∞, ~sk ¼ 1 and ½s−1k �þ ¼ ð1=2νÞ. Hence, the mean
energy Δk smoothly interpolates between

Δk¼0 ¼ 4ν

Z
q2½s−1q �þð∇2

q ~sqÞe−ðq2=2Þd2q ð26Þ

and

Δk→∞ ¼
Z

½s−1q �þð~sq þ 1Þe−ðq2=2Þd2q: ð27Þ

Numerically, the evaluation of Δk from model
Hamiltonians [3,4,9] also shows a minimum. GMP called
it the magnetoroton minimum. However, it is unclear
whether it has a universal meaning. The minimum relies
on features of s̄k beyond its universal part (19)–(22).
A sequence of minima in optical absorption are reported

in Ref. [2] for fractions other than Laughlin’s. It is not
clear whether they are related to the GMP minimum for
Laughlin’s states.
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