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We analyze an experimentally realizable model of bosons in a zigzag optical lattice, showing that, by
rapidly modulating the magnetic field, one can tune interaction parameters and realize an analog of the
Haldane phase. We explain how quantum gas microscopy can be used to detect this phase’s nonlocal string
order and its topological edge states. We model the detection process. We also find that this model can
display supersolid correlations, but argue that they only occur at parameter values which would be
challenging to realize in an experiment.

DOI: 10.1103/PhysRevLett.120.085301

In the past 30 years, one of the dominant themes in
condensed matter theory has been the search for models
where the collective excitations behave unlike any known
fundamental particle. While many such fractionalized and
topologically ordered models have been found [1], very
few of them have been experimentally realized. Here, we
show how to build on a setup proposed by the NIST cold
atom experimental group [2] to explore one of the iconic
fractionalized phases, the Haldane phase of a spin-1
chain [3].
In 1983, Haldane showed that the properties of integer

and half-integer spin chains can be profoundly different
[3,4]. Over the following decade, several researchers
explored the rich properties of the integer spin chain,
finding half integer spin edge modes [5–7], and nonlocal
string order [8–10]. More recently, Dalla Torre, Berg, and
Altman noted that similar physics should occur for spinless
bosons hopping on a one-dimensional lattice: the occupa-
tion numbers on each site play the role of the different spin
states [11,12]. Subsequently, analogs of the Haldane phase
have been predicted for a number of one-dimensional Bose-
Hubbard models with off-site interactions [13–16]. One
enlarges the parameter range over which the Haldane phase
is stable if there is a constraint on the maximum number of
particles per site. By combining a number of experimental
techniques, we show how to realize a model which would
be expected to support the Haldane phase. We use density
matrix renormalization group (DMRG) techniques to
calculate the properties of this model [17,18] and explain
how to detect the exotic signatures of the Haldane phase.
In a systemof one-dimensional lattice bosons, theHaldane

(HI) phase lies at the intersection of the density wave (DW)
phase, where double occupied sites (doublons) alternatewith
empty sites (holons), the Mott insulator (MI) phase, where
each site is occupied by a single atom, and the superfluid (SF)
phase, where the quasiparticles (doublons and holons) are

free tomove around. In theHaldane phase, the quasiparticles
are fluid but ordered: their spacing varies, but as one moves
from left to right the next quasiparticle after a doublon is a
holon, and vice versa. This ground state is fourfold degen-
erate in a large but finite system with hard-wall boundary
conditions—corresponding to the flavors of the leftmost and
rightmost quasiparticles—which are bound to the edges of
the system. This fourfold degeneracy was also found in the
original spin context, corresponding to two spin-1/2 degrees
of freedom, one sitting at each boundary.
One-dimensional bosonic systems have been realized by

trapping cold atoms in elongated optical traps [19–21].
Anisimovas et al. showed that by using a one-dimensional
(1D) spin dependent optical lattice and Raman induced
hopping, one could produce the zigzag lattice illustrated in
Fig. 1(a), described by the tight-binding model [2]

H ¼ t
X

j

ðc†1;jc−1;j þ c†1;j−1c−1;j þ H:c:Þ

− t0
X

j;s

ðc†s;jþ1cs;j þ c†s;jcs;jþ1Þ þ
U
2

X

j;s

ns;jðns;j − 1Þ

þ U2

X

j

½n1;j þ n1;j−1�n−1;j: ð1Þ

Here, s ¼ �1 labels the spin state of the atoms and j is the
position of the atom along the lattices. The hopping
between and within these two spin states are characterized
by t and t0. The on-site and nearest interspecies interaction
are described by U and U2. Following Anisimovas et al.
and shown in Fig. 1(a), one can think of Eq. (1) in one of
two ways: either as a two-leg “zigzag” lattice, or a 1D chain
with next-nearest neighbor hopping. The latter is closer to
the actual physical system. Following that interpretation,
we introduce operators b2j ¼ c−1;j and b2jþ1 ¼ cþ1;j, in
which case t, t0 are nearest and next-nearest neighbor
hopping parameters, while U, U2 are on-site and nearest
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neighbor interaction parameters, i.e., H ¼ t
P

iðb†iþ1bi þ
b†i biþ1Þ − t0

P
iðb†iþ2bi þ b†i biþ2Þ þ ðU/2ÞPiniðni − 1Þþ

U2

P
iniþ1ni. Aside from the longer range hopping,

Eq. (1) maps onto the model introduced by Dalla Torre
et al. in considering polar molecules in optical lattices.
Unfortunately, based on their analysis, one expects that the
Haldane phase is not stable when U/U2 is large—which is
the physically relevant regime considered in [2]. (Our
numerics confirm this expectation.) Here, we argue that,
by using a Feshbach resonance [22], one can reduce U,
driving the system into the Haldane phase. The lossy nature
of bosonic Feshbach resonances aids us, as the quantum
Zeno effect converts the resulting large three-body recom-
bination rate into a suppression of the probability of having
more than two particles on any given site—further stabi-
lizing the Haldane phase.
More concretely, we consider the F ¼ 1, mF ¼ 1, 0

states of 87Rb. The coefficient U is proportional to the
scattering length associated with two atoms in the same
magnetic sublevel. As illustrated in Fig. 1(b), this scattering
length can be manipulated by applying a magnetic field.
Near B1 ∼ 661.43 G, there is a zero crossing where the
interactions between two mF ¼ 0 atoms vanish, while near
B2 ∼ 685.43 G, there is a similar zero crossing for mF ¼ 1
[23]. We envision rapidly switching the magnetic field
between these two fields, as illustrated in Fig. 1(c). As long
as the switching time is short compared to the other scales

in the problem (h/U, h/t ∼ h/ER ≈ 0.27 ms for laser wave-
length λ ¼ 789 nm), the effective interaction in each spin
channel will be given by time averaging the instantaneous
Hamiltonian Ueff ¼

R
t
0 UðτÞdτ [24–26]. Even though, at

any given time, the interactions in the two channels will be
different, this time averaged interaction is the same for each
spin species, and U will be the same on all sites. This
technique effectively halves the strength of the on-site
interaction as in Fig. 1(b). The coefficient U2 is largely
unaffected. We find that one can achieve a ratio of on-site to
nearest neighbor interaction of U/U2 ≈ 1.6, for a lattice
depth of V0 ¼ 2ER (for the effect of a higher band, see the
Supplemental Material [27]). By appropriately tuning the
transverse confinement, one can take U2/t ¼ 2.5, yielding
U/t ¼ 4. Figure 2 shows the phase diagram for this model,
revealing that these parameters place the system within the
Haldane phase regime.
The zero crossings are very close to Feshbach resonances

and, hence, induce a large three-body loss rate K3. In the
present circumstance, this is advantageous. Following the
logic in [31], whenK3 is large, there is a strong suppression
of the process in which a third particle hops onto a site
containing two other particles. This suppression can be
modeled by a complex on-site three-body repulsion of
strength U3b ∼ −ihK3n2/12. We estimate that one can get
jU3bj ∼ 10ER for a typical on-site particle density n ∼ 2.1 ×
1015 cm−3 and typical on-resonance three-body rate
K3 ∼ 10−25 cm6/s. Since jU3bj is larger than the other
scales in the problem, it can be replaced by a constraint that
no more than two particles can occupy any site.
With this constraint, we use the DMRG to calculate the

properties of the model in Eq. (1). We start with an infinite
DMRG algorithm to grow the system to the desired
size, and then do finite DMRG sweeps until we reach

(a)

(b) (c)

FIG. 1. (a) Schematic of the experimental system, which can be
interpreted as a zigzag ladder or a 1D lattice with next-nearest
neighbor hopping. The green and orange colors label two
different spin states s ¼ �1. (b) On-site interaction U in
F ¼ 1, mF ¼ 0 (green dashed curve) and mF ¼ 1 (solid orange
curve) hyperfine states of 87Rb. The background interaction
strength U0 corresponds to the value of U away from the
Feshbach resonances near the zero crossings at B1 and B2.
Rapidly switching the magnetic field between B1 and B2, as
illustrated in (c), yields an effective time-averaged on-site
interaction Ueff ¼ U0/2 in both channels.
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FIG. 2. Representative slice of the phase diagram of the model
in Eq. (1). Here,U2/t ¼ 2.5, and the maximum occupation of any
site is 2. Dots show our best estimate of phase boundaries, as
determined by bipartite number fluctuations, and lines represent
error bars [27]. Yellow, red, blue, and green show amplitude of
the correlation functions in Eq. (2) at a separation of s ¼ 80 sites
in a chain of length 256. At shorter length scales, correlations are
of similar size, but the boundaries are less sharp.
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convergent. This technique is typically understood as
systematically optimizing a variational wave function in
the form of a matrix product state [18]. The degree of
approximation is controlled by the bond dimension d. We
have considered systems as large as L ¼ 512 sites, and
bond dimensions as large as d ¼ 500. The algorithm is
more efficient if we alter the boundary conditions to break
the potential fourfold degeneracy of the Haldane-phase
ground state and the potential twofold degeneracy of the
density wave ground state. In particular, we used boundary
conditions which pin a vacancy at the left-most site, and
doublon at the right-most site. We analyze convergence
with bond dimension and system size in the Supplemental
Material [27]. From these studies, we expect that experi-
ments on systems of size L ∼ 60 will see significant finite-
size effects near the phase boundaries, but the bulk physics
is unchanged, and such experiments will be able to
unambiguously observe all of the relevant physical
phenomena.
The order in the Haldane, Mott insulator, density wave

phases are encoded in string (str), parity (MI), and density
wave (DW) correlation functions [8,12]

Cstr
ij ¼ hδnieiπ

P
i<k<j

δnkδnji;
CMI
ij ¼ heiπ

P
i≤k≤j

δnki;
CDW
ij ¼ ð−1Þj−ihδniδnji; ð2Þ

where δnk ¼ nk − 1. The phase factor eiπ
P

i<k<j
δnk ¼ �1

depends on if the number of quasiparticles between sites i
and j is even or odd. In the superfluid phase, all of the three
correlation functions fall to zero as i and j are separated. In
the Haldane or Mott insulator phase, only Cstr/CMI has
long-range order, while in the density wave phase all the
three correlation functions are nonzero.
Additionally, we study the single particle density matrix

CSF
ij ¼ hb†i bji and the bipartite number fluctuations,

Dj ¼ hN2
i<ji − hNi<ji2, where Ni<j ¼

Pj−1
i¼1 ni is the num-

ber of particles to the left of site j. The superfluid phase is
characterized by power-law behavior of the density matrix
and enhanced bipartite number fluctuations when com-
pared to the incompressible insulating phases. We found
that these number fluctuations were the most reliable way
to extract the phase boundaries between the superfluid and
insulating phases [27]. In particular, due to the different
scaling with system size, the number fluctuations in half the
chain, DL/2, form plateaus in each of the phases, and the
phase boundaries correspond to peaks in the slope
dDL/2/dt0. We use the FWHM of these peaks as an estimate
of the accuracy of these boundaries. This approach is
adapted from [32] and is similar to finding phase bounda-
ries from peaks in specific heat.
Additionally, the DW to HI transition can be accurately

determined from the properties of CDW. Applying finite
size scaling [33] to the asymptotic behavior of this

correlation function yields a DW-HI boundary which
agrees with our calculation using the number fluctuations.
The various superfluid-insulator transitions are not ame-
nable to this standard finite size scaling analysis: they have
behavior related to Kosterlitz-Thouless transitions and are
harder to determine. In addition to our technique of looking
at number fluctuations, these transitions can be identified
by looking at the excitations spectrum [13] or superfluid
stiffness [34], by taking moments of CSF [35,36], or by
comparing the power law decay of CSF to a Luttinger liquid
model [37,38]. More discussion of the critical behavior can
be found in [39]. Because of the significant finite size
effects, it is unlikely that an experiment would be able to
accurately determine these phase boundaries.
The correlation functions in Eq. (2) are directly measur-

able via a quantumgasmicroscope [40–44]. One projects the
quantum state into one in which there is a definite number of
particles on each site—giving a single realization of fnig.
Repeating themeasurementmany times allows one to extract
the expectation values in Eq. (2). This technique has already
been used to measure the parity order [44].
In addition to showing the phase boundaries, Fig. 2 shows

the size of correlations on a length scale of 80 sites. In a
significant part of the phase diagram, the string correlations are
large but all other correlation functions vanish. This corre-
sponds to the desired Haldane phase. The HI, DW, and MI
correlations at shorter length scales are of similar strength, but
display less sharp boundaries. As would be expected, the SF
correlations are strongly length dependent. They are also
extremely hard to measure in an experiment. The simplest
experimental knob for moving through this phase diagram is
the strength of the Raman beams, which changes t while
leaving all other scales unchanged. Additionally, both t and t0
are exponentially sensitive to the lattice depth, while the ratio
between U and U2 is controlled by modifying the time
dependence of the magnetic field.
In addition to exploring the expectation values of the

various correlation functions, we use a novel Monte Carlo
sampling algorithm to stochastically generate “typical”
cold-gas microscope images [27]. Given the DMRG wave
function jψi, we first calculate the probability that site-1
had zero, one, or two particles on it. We use these
probabilities to choose one of these sectors, and project
the wave function into that sector. This calculation is then
repeated on site 2, using the new wave function. Figure 3
shows configurations generated by this algorithm, which
should be representative of what is seen in an experiment.
We emphasize that these are not cartoons, but rather are
unbiased samples. As expected, in the HI phase the
doublons and holons alternate, with a variable number
of singly occupied sites between them. This can be
contrasted with the SF phase, where there is no ordering
of the doublons and holons. In the DW phase, doublons and
holons alternate. In these images, one sees a small number
of defects in the order—as should be expected. In the MI
phase the images show very few holons and doublons—and
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those which exist are tightly bound together. In this figure,
we also show images with supersolid (SS) correlations
that can appear when we relax the constraint forbidding
double occupancy. The physics of this regime will be
discussed below.
To illustrate the role of the three-body constraint, we

repeated our calculations, allowing the on-site particle
number to be as large as three. Figure 4 shows the analog
of Fig. 2. All correlations, except those corresponding to SF

order, are much weaker. Short and medium range HI, MI,
and DW correlations are detectable, but our scaling analysis
suggests that, for these parameters, there is no long-range
DW or HI order.
For small on-site interaction U and finite next nearest

hopping t0, we find a superfluid region with short-range
density wave order, which is suggestive of proximity to a
SS phase. Such a phase would be more familiar in the
language of the zigzag ladder picture: The atoms form a
superfluid which preferentially sits on one leg of the ladder.
An alternative cartoon can be constructed from the DW
state “2020202020.” Because of the next-nearest neighbor
hopping, one can produce a triplon-singlon pair
“2020103020,” and these defects may be mobile.
Forbidding triple occupancy eliminates these excitations,
and prevents the occurrence of this phase in the constrained
model. In addition to such triplons and singlons, the
configurations in Fig. 3 display defects where atoms have
hopped from even to odd sublattices. These defects are
responsible for the short-range nature of the correlations.
To summarize, we have proposed a way to realize the

Haldane phase in a gas of 87Rb atoms trapped in a zigzag
optical lattice, where a different atomic spin state is trapped
on each leg of the ladder. One reduces the on-site
interactions (relative to the nearest neighbor interactions)
by rapidly sweeping the magnetic field between two zero
crossings associated with Feshbach resonances in each of
the spin states. The proximity to the Feshbach resonances
introduces large three-body loss, which, via the quantum
Zeno effect, prevents triple occupation. We calculate the
phase diagram of this model and find that the Haldane
phase is experimentally realizable. We modeled a quantum-
gas microscope experiment and found that one can readily
identify the string order of the Haldane phase in individual
images. More quantitative tests require averaging over
several images. Such averaging has been used to identify
other nonlocal order parameters [44]. Further, we show that
without the constraint on particle number, this model shows
hints of a supersolid phase (cf. [45,46]). One would need to
use other techniques, however, to experimentally reach this
supersolid regime. Seeing the string order in the Haldane
phase would be a remarkable triumph in engineering
quantum matter.
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FIG. 3. Typical configurations of occupation numbers extracted
from the central 20 sites of our DMRG wave functions, modeling
single-shot quantum gas microscope images. Configurations
correspond to parameters in which different forms of order
can be observed: HI(U/t ¼ 4, U2/t ¼ 2.5 for t0/t ¼ 0), SF
(U/t ¼ 4, U2/t ¼ 2.5 for t0/t ¼ 1), DW(U/t ¼ 1, U2/t ¼ 2.5
for t0/t ¼ 0), MI(U/t ¼ 10, U2/t ¼ 2.5 for t0/t ¼ 0). The last
figure has short-range supersolid correlations: SS(U/t ¼ 0,
U2/t ¼ 2.5 for t0/t ¼ 0.6 for maximum occupation number
three). Each circle resembles a single site, and the number in
the circle tells how many atoms are on this site. We show two
independent realizations for each phase.
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FIG. 4. Representative slice of phase diagram when maximum
occupation of any site is three. All parameters and symbols are
the same as in Fig. 2. Note change of scale on color bars. For
these parameters, there are regions with short or intermediate-
range density wave (yellow) or Haldane order (red), but no long-
range order.
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