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We show that the output of systems with time-varying delay can exhibit a new kind of chaotic behavior
characterized by laminar phases, which are periodically interrupted by irregular bursts. Within each laminar
phase the output intensity remains almost constant, but its level varies chaotically from phase to phase. In
scalar systems, the periodic dynamics of the lengths and the chaotic dynamics of the intensity levels can be
understood and also tuned via two one-dimensional maps, which can be deduced from the nonlinearity of
the delay equation and from the delay variation, respectively.
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Time-delay systems are known for their rich variety of
dynamical behaviors [1–3]. In particular, systems with
large delay are of general interest [4] and exhibit interesting
phenomena, such as multistability and multiple chaotic
attractors [5–7]. By introducing a space-time representa-
tion, many aspects of spatially extended systems can also
be found in time-delay systems [8], which are, for example,
spatiotemporal intermittency and defects [9], or concepts
such as Eckhaus instabilities [10] and convective instabil-
ities [11]. Whereas these aspects are well understood for
systems with constant delays, much less is known for
variable delays, although the latter typically provide more
realistic models. Time-varying delays further increase the
complexity of the dynamics [12–15]. Some useful proper-
ties for application to chaos communication can be found in
[16,17]. On the other hand, a delay modulation can stabilize
the system [18,19]. An analytical approach is available for
systems with a fast delay variation, where the variable delay
can be approximated by a time-invariant distributed delay
[20]. However, in general, this approximation is not valid.
In this Letter, we demonstrate that introducing a time-

varying delay can lead to hitherto unknown chaotic
behavior. We characterize the new chaotic behavior by
using the concept of dissipative delays, which was recently
introduced in Ref. [21]. Let us consider scalar delay
differential equations (DDE) of the form

1

T
̇zðtÞ ¼ −zðtÞ þ f(z½RðtÞ�);

with RðtÞ ¼ t − τðtÞ: ð1Þ

RðtÞ is the retarded argument, and τðtÞ is the time-varying
delay. Well-known systems with a structure as in Eq. (1) are
the Ikeda equation, with fðzÞ ¼ μ sinðzÞ [22,23], describ-
ing the dynamics of an optical ring cavity with a nonlinear
dielectric medium, and the Mackey-Glass equation, with
fðzÞ ¼ μz/ð1þ z10Þ [24], which is a model for blood cell

production. The DDE where fðzÞ is given by the logistic
map, i.e., fðzÞ ¼ μzð1 − zÞ, is an appropriate prototype
system for deriving the general properties of the solutions
of Eq. (1) [25], since the dynamics of the logistic map is
well understood. Systems described by Eq. (1) are inter-
esting for many applications, such as random number
generators [26], chaos communication [16,17,27], or res-
ervoir computing [28] because they can be realized easily
by optical, electronic, and optoelectronic setups. Often, the
parameter T in Eq. (1) is large. For example, by rescaling
time it can be seen that Eq. (1) with large T is equivalent to
a large delay. For systems with constant delays, the large
delay limit of DDEs has been extensively analyzed in the
literature. For example, phenomena such as slowly oscil-
lating periodic solutions [25,29,30], multistability of peri-
odic solutions [6,31–33], and the scaling behavior of the
Lyapunov exponents [34,35] have been studied. For sys-
tems with large time-varying delays, only a few results are
available. Some general aspects can be derived from the
theory of singularly perturbed systems with state dependent
delays [36]. Moreover, the systems that were analyzed in
Ref. [37] correspond to this class of systems.
As demonstrated in Ref. [21] there are two classes of

time-varying delays, leading to a fundamentally different
tangent space dynamics. Systems with conservative delay
are equivalent to systems with constant delay, where
“equivalent” means that the systems are connected by an
invertible time scale transformation φ ¼ ΦðtÞ, which
leaves the dynamical quantities invariant. Systems with
dissipative delay cannot be mapped to systems with
constant delay. Roughly speaking, for conservative delays
the associated access map t0 ¼ RðtÞ is topological con-
jugate to the access map φ0 ¼ RcðφÞ ≔ φ − c of a system
with a constant delay c, that is, Φ½RðtÞ� ¼ Rc½ΦðtÞ�. In
contrast, for dissipative delays, the access map R exhibits
mode locking and no topological conjugacy to a map Rc
can be found. In other words, for dissipative delays the
access map R is dissipative, not to be confused with the
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dissipative nature of Eq. (1), which holds for conservative
as well as for dissipative delays. In this Letter, we will
demonstrate that under certain conditions a new kind of
chaotic behavior can be found in systems with dissipative
delay, which fundamentally differs from the known behav-
ior for a constant or time-varying conservative delay. In
Fig. 1, the difference is illustrated by two exemplary
chaotic trajectories of DDE (1). Figure 1(a) shows a typical
solution for a time-varying conservative delay. The trajec-
tory is characterized by strong fluctuations, as known from
systems with constant delay, and we call the related
dynamics turbulent chaos, in accordance with the term
“optical turbulence,” which was introduced in Ref. [23]. In
contrast, for generating the trajectory in Fig. 1(b), only the
mean delay was changed from τ0 ¼ 1.54 as used for
Fig. 1(a) to τ0 ¼ 1.50, such that the class of the delay
variation changes from conservative to dissipative. The
trajectory in Fig. 1(b) is characterized by nearly constant
plateaus and burstlike transitions between them. In contrast
to the known slowly oscillating periodic solutions for
systems with constant delay, the heights of the plateaus
during the laminar phases vary chaotically. Since the
dynamics is mainly characterized by laminar phases with
chaotic intensity variations between these phases, we call
this type of chaotic behavior laminar chaos. Note that this
behavior is also very different from intermittent chaos,
which is characterized by laminar phases of fixed intensity,
but with stochastically varying durations [38]. Solutions
similar to the one presented in Fig. 1(b) can be found for
many realizations of Eq. (1) with dissipative delay and large
T. In the following, we analyze the properties of this
hitherto unknown chaotic behavior, its connection to the
above mentioned delay classes, and provide the conditions
for its appearance.

For the theoretical investigation below, we consider
periodic delays, and we rescale time such that the delay
period is equal to one, τðtþ 1Þ ¼ τðtÞ. We further assume
the retarded argument R to be invertible, i.e., ̇τðtÞ < 1,
and we denote the inverse by R−1. In this case, the state
intervals of the DDE (1) are given by ðtn−1; tn�, with n ∈ N
and tn−1 ¼ RðtnÞ. We use the method of steps for the
solution of Eq. (1), that is, the DDE is integrated stepwise
from one state interval to the next [39] and znðtÞ denotes
the solution inside the nth state interval t ∈ ðtn−1; tn�.
Starting from the initial function z0ðtÞ, the solution z1ðtÞ
in the first interval can be obtained via the variation of
constants formula. In general, the mapping is defined by

znþ1ðtÞ ¼ znðtnÞe−Tðt−tnÞ þ
Z

t

tn

dt0Te−Tðt−t0Þffzn(Rðt0Þ)g;

ð2Þ

with t ∈ ðtn; tnþ1�. Eq. (2) can be divided into three steps,
the delay access defined by the Koopman operator C
[40,41] with ðCψÞðtÞ ¼ ψ(RðtÞ), the nonlinear mapping
defined by the operator F with ðFψÞðtÞ ¼ f(ψðtÞ), and
the integration operator T n, given by ðT nψÞðtÞ ¼
zðtnÞe−Tðt−tnÞ þ

R
t
tn
dt0Te−Tðt−t0Þψðt0Þ. With these defini-

tions Eq. (2) can be written as [42]

znðtÞ ¼ ðT n−1FCzn−1ÞðtÞ: ð3Þ

For a constant delay, the dynamics is only characterized
by the operators T n and F , because in this case, C reduces
to a simple shift operator [11]. For systems with a time-
varying delay, the Koopman operator C can have a
significant influence on the dynamics of the DDE [21].
The operator T n smooths the involved function with the
integral kernel Te−Tðt−t0Þ. For a large T, the kernel
approaches the Dirac δ distribution, and the term
zðtnÞe−Tðt−tnÞ vanishes [5]. As a consequence, for
T → ∞, the operator T n becomes the identity, and
Eq. (3) simplifies to

zn ¼ FCzn−1 ¼ f∘zn−1∘R ¼ fn∘z0∘Rn; ð4Þ

which we call the limit map in an extension of the
notation used in Refs. [32,43] for systems with constant
delay. Laminar chaos can be found for dissipative delays
and large T, which means that its main properties can be
derived on the basis of Eq. (4). The dynamics of the limit
map can be regarded as the evolution of the graph
(θ; z0ðθÞ) representing the initial state of Eq. (4) under
the iteration of the two-dimensional map ðt0; z0Þ ¼
(R−1ðtÞ; fðzÞ). For n iterations, we obtain the parame-
trized curve

½tðθÞ; zn(tðθÞ)� ¼ ½ðR−1ÞnðθÞ; fn(z0ðθÞ)�; ð5Þ

(a)

(b)

FIG. 1. Exemplary trajectories of DDE (1) with fðzÞ ¼
4zð1 − zÞ and sinusoidal delay τðtÞ ¼ τ0 þ A sinð2πtÞ for (a) a
conservative delay (τ0 ¼ 1.54) leading to turbulent chaos known
from systems with constant delay [23], and for (b) a dissipative
delay (τ0 ¼ 1.50) leading to laminar chaos characterized by
burstlike transitions at the attractive periodic points of the map
R−1ðtÞ mod 1 (vertical lines) and constant laminar phases
between them [T ¼ 200, A ¼ 0.9/ð2πÞ].
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where the parameter θ varies in the initial interval ðt−1; t0�.
The graph (t; znðtÞ) represents the state znðtÞ inside the
nth state interval ðtn−1; tn� corresponding to the n-fold
application of Eq. (4) to the initial state z0ðθÞ. Obviously,
the two-dimensional map decomposes into two indepen-
dent one-dimensional maps

xn ¼ R−1ðxn−1Þ ¼ R−nðx0Þ; ð6aÞ
yn ¼ fðyn−1Þ ¼ fnðy0Þ: ð6bÞ

The map R−1 specifies the position xn on the x-axis
corresponding to the time axis of the DDE and the map f,
or equivalently, the operator F creates the function values
yn at the points xn.
The construction of the solution of the DDE (1) for

conservative and dissipative delays with the exact formula
Eq. (3) and with the limit map Eq. (4) associated with
Eqs. (6a) and (6b) is illustrated in Fig. 2. For conservative
delays, the reduced map R−1 mod 1 exhibits quasiperiodic
dynamics that preserve the mean distance between the
points xn. If f exhibits chaotic dynamics, due to the
sensitivity of initial conditions, variations in (θ; z0ðθÞ)
cause oscillations in (t; znðtÞ), which get stronger for
increasing n [see Fig. 2(b)]. For finite T, the additional
smoothing operator T n damps high frequencies [5,11].
Thus, for conservative delays, the operator C has no
significant influence on the dynamics (cf. [21]), and
turbulent chaos appears as known from systems with a
constant delay [see Fig. 2(a)]. In contrast, for dissipative
delays, the dynamics under iterations of the reduced
map R−1 mod 1 is characterized by mode locking and
attracting motion with rational rotation number ρ ¼ ðp/qÞ

(cf. Refs. [44,45]). There are p stable equilibria, or stable
periodic points, inside each state interval ðtn−1; tn�, and the
xn accumulate at these attracting points under iterations of
Eq. (6a). Consequently, the graph (t; znðtÞ) develops p
plateaus, separated by the attracting points where the
oscillations from the iterations of the map f accumulate
[see Fig. 2(d)]. Similar to the case of a conservative delay,
for finite T, the smoothing operator T n in Eq. (3) damps
high frequency oscillations, which appear, for dissipative
delays, only at the plateau boundaries of the laminar chaotic
solution [see Fig. 2(c)]. Thus, the fundamentally different
properties of the operator C for dissipative delays facilitate
the existence of laminar chaos. As illustrated in Fig. 3, each
of the p plateaus inside the state interval ðtn−1; tn� is
mapped uniquely to one plateau inside the next state
interval ðtn; tnþ1�. The width of the laminar phases (pla-
teaus) depends on the arrangement of the attracting points
of the map R−1, whereas the intensity levels yn during the
laminar phases in the nth state interval are connected to the
intensity levels yn−1 of the corresponding laminar phases in
the previous state interval via the function f, as in Eq. (6b).
Conversely, the latter property allows for a simple deter-
mination of the nonlinearity f of the delay equation,
Eq. (1), by experimentally observing the intensity level
variation of laminar chaos.
In the following, we derive a quantitative criterion for the

existence of plateaus in the limit map Eq. (4), which is a
necessary condition for the existence of laminar chaos in
systems with dissipative delay. Plateaus exist if the time
derivative ̇znðtÞ vanishes between the plateau boundaries,
i.e., between the attracting points of the map R−1. The
derivative of znðtÞ is obtained via Eq. (4) as

(a)

(b)

(c)

(d)

FIG. 2. Construction of the solution of Eq. (1) for large T via the exact formula Eq. (3) (a),(c) and the limit map Eq. (4) (b),(d). For a
conservative delay (a),(b), the operator C has no significant effect, and each iteration of F creates stronger chaotic oscillations resulting
in turbulent chaos. For dissipative delays (c),(d), the periodic repulsive and attracting properties of the map R−1 [21] lead to laminar
phases and irregular bursts, because the chaotic oscillations are compressed at the attracting points of R−1. For finite T (a),(c), the
additional operator T n smooths the solutions compared to the case T → ∞ in (b),(d).
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̇znðtÞ ¼ ðfnÞ0ðyÞjy¼z0ðRnðtÞÞz00ðθÞjθ¼RnðtÞðRnÞ0ðtÞ: ð7Þ
For large n, RnðtÞ converges to θ�, where θ� is an attracting
point of the map R mod 1, that is a repulsive point of R−1

located within the plateaus (cf. Fig. 3), and correspond-
ingly, z00½RnðtÞ� → z00ðθ�Þ ¼ const. The derivatives of fn

and Rn increase or decrease exponentially for a large n,
jðfnÞ0ðyÞj ∼ enλ½f� and jðRnÞ0ðtÞj ∼ enλ½R�, where λ½f� and
λ½R� denotes the Lyapunov exponent (cf. Ref. [44]) of the
maps f and R, respectively. As a result, for increasing n, the
derivative ̇znðtÞ converges to zero, and the solution znðtÞ of
the limit map Eq. (4) becomes constant between two
attracting points of the map R−1 if

λ½f� þ λ½R� < 0: ð8Þ
Thus, laminar chaos can be observed only if Eq. (8) holds
and λ½f� > 0. The condition Eq. (8) holds exactly in the
limit T → ∞. For finite T, the width of the integration
kernel of the additional smoothing operator T n, and
therefore the width of the irregular bursts at the boundaries
of the laminar phases, scales with 1/T. As a consequence,
laminar phases can develop only if the distance between
two attracting points of the map R−1 is sufficiently larger
than 1/T.
The occurrence of laminar chaos can depend sensitively

on the parameters of the delay τðtÞ because, for example, the
Lyapunov exponent of the access map R changes in a fractal
manner with the parameters (cf. [21]). The latter is well-
known for circlemaps and can be illustrated by the Lyapunov

chart λ½R�ðτ0; AÞ [46] illustrated in Fig. 4(a) for an exemplary
access map. The criterion Eq. (8) holds above the contour
λ½R�ðτ0; AÞ ¼ −λ½f� [see dashed red line in Fig. 4(a)]. For
A ¼ 1 there is one superstable orbit (λ½R� ¼ −∞) inside each
mode-locking regime [47]. Thus, for each dissipative delay
τðtÞ and each rational rotation number, there exists a finite
region in parameter space, namely in a neighborhood of the
superstable parameter points, where laminar chaos is pos-
sible. In Fig. 4(b), the Kaplan-Yorke dimension [45] of the
Mackey-Glass equation with time-varying delay for large T
is plotted for a fixed amplitude A ¼ 0.9 as a function of the
mean delay τ0. For conservative delays, we have λ½R� ¼ 0.
Consequently, turbulent chaos appears, which is character-
ized by a large Kaplan-Yorke dimension. In contrast, for
dissipative delays with λ½f� þ λ½R�ðτ0; AÞ < 0, laminar
chaos with a very low Kaplan-Yorke dimension appears.
One can also observe that there exist, in addition, dissipative
delays with λ½R�ðτ0; AÞ < 0, where the criterion (8) is not
fulfilled but other local minima of the Kaplan-Yorke dimen-
sion can be observed. A study of these intermediate states,
which are qualitatively different from laminar and turbulent
chaos, will be presented elsewhere.
In conclusion, we have presented a hitherto unknown

type of chaotic behavior, which we call laminar chaos. It is
characterized by laminar phases with a chaotically varying
intensity and burstlike transitions between them. Laminar
chaos is observed, for example, in systems with large
dissipative delays, because for large delays, the influence of

FIG. 3. A laminar chaotic solution zðtÞ and the inverse access
map Eq. (6a) of the corresponding dissipative delay with rotation
number ρ ¼ ðp/qÞ are shown (here ρ ¼ 3

2
). The arrows indicate

the mapping of the boundaries of the laminar phases to the next
state interval, which correspond to the attractive periodic points
of R−1 mod 1 (the attractive fixed points of R−qðtÞ − p, where the
subtraction of p removes the drift). Thus, the width and the
location of the plateaus is specified by the variable delay τðtÞ,
whereas its intensity levels are given by the nonlinearity
f (see text).

(a)

(b)

FIG. 4. a) Lyapunov chart of the access map R for
τðtÞ ¼ τ0 þ A sinð2πtÞ/ð2πÞ, where the contours correspond to
a constant Lyapunov exponent λ½R�ðτ0; AÞ. For Eq. (1) with
fðzÞ ¼ 2z/ð1þ z10Þ (Mackey-Glass equation) the criterion (8)
for laminar chaos is fulfilled above the dashed (red) line, which in
this case corresponds to the contour level −λ½f� ≈ −0.51.
(b) Kaplan-Yorke dimension DKY of this system (T ¼ 2000)
for the sinusoidal delay with A ¼ 0.9 [horizontal dashed line in
(a)]. For conservative delays very high attractor dimensions are
possible. In contrast, for mean delays τ0, where Eq. (8) holds,
DKY is very small indicating laminar chaos.
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the integration operator T n vanishes, whereas the proper-
ties of dissipative delays become more important. In the
present Letter, laminar chaos was only studied for scalar
DDEs. However, similar phenomena exist in more general
nonscalar systems, which we observed, for example, in the
Lang-Kobayashi equations. For higher dimensional maps
f, one can obtain laminar chaos in one direction and
turbulent chaos in another direction. Moreover, for more
complex access maps R, it may be possible to obtain a
temporal switching between laminar and turbulent phases.
Laminar chaotic solutions may also exist in other systems
such as renewal equations with dissipative delay. The shape
of the chaotic solutions can be tuned by changing the
properties of the retarded argument R and the nonlinearity
f, which might be interesting for applications. Since
dynamical systems with a time-varying delay can be
realized by optoelectronic experiments, the presented
dynamical behavior, in principle, can be observed exper-
imentally and may lead to new applications or improve-
ments of existent applications. For example, in information
processing technologies, such as chaos communication
[27] and reservoir computing [28], the laminar phases
may be used as information units, where their intensity
levels code the information to be processed.
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