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In network theory, a question of prime importance is how to assess network vulnerability in a fast and
reliable manner. With this issue in mind, we investigate the response to external perturbations of coupled
dynamical systems on complex networks. We find that for specific, nonaveraged perturbations, the
response of synchronous states depends on the eigenvalues of the stability matrix of the unperturbed
dynamics, as well as on its eigenmodes via their overlap with the perturbation vector. Once averaged over
properly defined ensembles of perturbations, the response is given by new graph topological indices, which
we introduce as generalized Kirchhoff indices. These findings allow for a fast and reliable method for
assessing the specific or average vulnerability of a network against changing operational conditions, faults,
or external attacks.

DOI: 10.1103/PhysRevLett.120.084101

Introduction.—Graph theory profoundly impacts many
fields of human knowledge, including social and natural
sciences, communication technology and electrical engi-
neering, and information sciences and cybernetics [1].
Graphs allow for a convenient modelization of complex
systems where their structure defines the couplings
between the system’s individual components, each of them
with its own internal dynamics. The resulting coupled
differential equations determine the system dynamics and
its steady-state solutions. Of particular interest is to predict
the behavior of the system when it is perturbed away from
steady state, for instance, when an electric power plant goes
offline in an operating power grid or when a line is cut and
information has to be redirected in a communication
network. An issue of key importance for network security
is how to fast and reliably assess a network’s vulnerability.
This is not an easy task: network vulnerability depends on
both the system dynamics and the network topology and
geometry. It is highly desirable to identify a set of easily
computed descriptors that characterize network vulnerabil-
ity [2]. In this Letter we propose a new family of network
descriptors in a two-step approach. We investigate the
sensitivity against external perturbations of synchronous
states of coupled dynamical systems on complex networks.
First, we quantify this sensitivity using performance mea-
sures recently introduced in the context of electric power
grids [3–5]. Second, by direct calculation of these perfor-
mance measures, we identify a new class of easily
computed topological indices that generally characterize
synchrony robustness or fragility under ensemble-averaged
perturbations.
Synchronization is ubiquitous [6] in systems of coupled

dynamical systems. It follows from the interplay between
the internal dynamics of the individual systems and the

coupling between them [7–10]. Optimization of synchro-
nization has been investigated from various angles. The
synchronous state can be optimal from the point of view of
linear stability [11], the range of parameters that allow
synchronization [12–14], the value that an order parameter
takes at synchrony [15], or the volume of the basin of
attraction around a stable synchronous fixed point [16–18].
Here we extend these investigations by asking what makes
synchronous states more or less fragile against external
perturbations. For ensemble-averaged perturbations, the
answer is surprisingly simple: synchrony fragility depends
on a family of topological indices, which generalize the
Kirchhoff index introduced in Ref. [19]. This result is rather
general and remains valid for a large class of fragility
performance measures quantifying the excursion away
from the stable synchronous state, and for rather general
synchronizing coupled dynamical systems. Its main restric-
tion is that it applies to not-too-large perturbations, which
leave the system inside its original basin of stability.
Model and method.—Our analysis focuses on the

Kuramoto model [7]

θ
̣

i ¼ Pi −
X
j

bij sinðθi − θjÞ; i ¼ 1;…; n; ð1Þ

though our results are more general and apply to a wider
class of coupled dynamical systems (see Supplemental
Material [20]). Equation (1) models the behavior of a set of
n harmonic oscillators, each with its angle coordinate θi
and its natural frequency Pi, coupled to one another with
couplings defined by the weighted adjacency matrix
bij ≥ 0. Kuramoto originally considered identical all-to-
all coupling, bij ≡ K/n [7]. It was found that for K > Kc, a
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finite number of oscillators synchronize, with θ
̣

i − θ
̣

j ¼ 0.
This type of frequency synchronization also occurs for
nonhomogeneous couplings bij defined on a complex
network [21], the case of interest here. Without loss of
generality we set

P
iPi ¼ 0, for which the frequency

synchronous state has θ
̣
i ≡ 0, ∀i [22].

We consider a stable fixed-point solution θð0Þ ¼
ðθð0Þ1 ;…; θð0Þn Þ to Eq. (1) with unperturbed natural frequen-
cies Pð0Þ. We then subject this state to a time-dependent
perturbation PðtÞ ¼ Pð0Þ þ δPðtÞ, so that angles become
time dependent, θðtÞ ¼ θð0Þ þ δθðtÞ. Linearizing the
dynamics of Eq. (1) about θð0Þ, one obtains

δθ
̣
¼ δP − Lðθð0ÞÞδθ; ð2Þ

where we introduced the weighted Laplacian matrix Lðθð0ÞÞ
with matrix elements

Lij ¼
8<
:

−bij cosðθð0Þi − θð0Þj Þ; i ≠ j;P
k
bik cosðθð0Þi − θð0Þk Þ; i ¼ j:

ð3Þ

This Laplacian is minus the stability matrix of the linear-
ized dynamics, and since we consider a stable synchronous
state, it is positive semidefinite, with a single eigenvalue
λ1 ¼ 0 with eigenvector u1 ¼ ð1; 1; 1;…; 1Þ/ ffiffiffi

n
p

, and
λi > 0, i ¼ 2; 3;…; n.
The first term on the right-hand side of Eq. (2) perturbs

angles away from the synchronous state. To assess the
magnitude of this excursion in the spirit of Refs. [3–5], we
consider two fragility performance measures

C1ðTÞ ¼
X
i

Z
T

0

jδθiðtÞ − ΔðtÞj2dt; ð4aÞ

C2ðTÞ ¼
X
i

Z
T

0

jδθ
̣

iðtÞ − Δ
̣
ðtÞj2dt: ð4bÞ

Because synchronous states are defined modulo any

homogeneous angle shift, the transformation θð0Þi → θð0Þi þ
C does not change the synchronous state. Accordingly,
only angle shifts with

P
iδθiðtÞ ¼ 0 matter, which is

incorporated in the definitions of C1;2 by subtracting

averages ΔðtÞ ¼ n−1
P

jδθjðtÞ and Δ
̣
ðtÞ ¼ n−1

P
jδθ

̣

jðtÞ.
An alternative procedure is to restrict oneself to perturba-
tions orthogonal to u1 [3–5]. Either procedure ensures,
together with the non-negativity of L, that C1;2 < ∞, even
when T → ∞, if the perturbation is short and weak enough
that it leaves the dynamics inside the basin of attraction of
θð0Þ. Low values for C∞1;2 ≡ C1;2ðT → ∞Þ indicate then that
the system absorbs the perturbation with little fluctuations,
while large values indicate a temporary fragmentation of

the system into independent pieces; C∞1;2 measures the
coherence of the synchronous state [3].
We expand angle deviations over the eigenstates uα of L,

δθðtÞ ¼ P
αcαðtÞuα, and rewrite Eq. (2) as

c
̣
αðtÞ ¼ δPðtÞ · uα − λαcαðtÞ; ð5Þ

whose general solution reads

cαðtÞ ¼ e−λαtcαð0Þ þ e−λαt
Z

t

0

dt0eλαt0δPðt0Þ · uα: ð6Þ

Being interested in perturbations δP that start at t ¼ 0,
when the system is in the synchronous state with
δθð0Þ ¼ 0, we set cαð0Þ≡ 0. The performance measures
of Eqs. (4) are given by C1ðTÞ ¼

P
α≥2

R
T
0 c2αðtÞdt and

C2ðTÞ ¼
P

α≥2
R
T
0 c

̣
2
αðtÞdt, as long as the perturbation is not

too large, so that the system eventually returns to its initial
state. We next introduce generalized Kirchhoff indices in
terms of which we express C1;2 for three different classes of
perturbations δPðtÞ.
Generalized Kirchhoff indices.—The Kirchhoff index

originally followed from the definition of the resistance
distance in a graph [19]. To a connected graph, one
associates an electrical network where each edge is a
resistor given by the inverse edge weight in the original
graph. The resistance distance is the resistance Ωij between
any two nodes i and j on the electrical network. The
Kirchhoff index is then defined as [19]

Kf1 ≡
X
i<j

Ωij; ð7Þ

where the sum runs over all pairs of nodes in the graph. For
a graph with Laplacian L, it has been shown that Kf1 is
given by the spectrum fλαg of L as [23–25]

Kf1 ¼ n
X
α≥2

λ−1α : ð8Þ

Up to a normalization prefactor, Kf1 gives the mean
resistance distance Ω over the whole graph. Intuitively,
one expects the dynamics of a complex system to depend
not only onΩ, but on the full set fΩijg. Higher moments of
fΩijg are encoded in generalized Kirchhoff indices Kfm
(see Supplemental Material [20]) which we define as

Kfm ¼ n
X
α≥2

λ−mα ; ð9Þ

for integersm. Below we show that C1;2 can be expressed as
linear combinations of the Kfms corresponding to L in
Eq. (3). We note that, continued to m ∈ C, Kfm is known
as the spectral zeta function of L [26].
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Dirac delta perturbation.—We first consider δPðtÞ ¼
δP0τ0δðtÞ with the Dirac delta function δðtÞ. Because the
perturbation is limited in time, the limit T → ∞ can be
taken in Eqs. (4). One obtains (see Supplemental Material
[20])

C∞1 ¼
X
α

ðδP0 · uαÞ2τ20
2

λ−1α ; ð10aÞ

C∞2 ¼
X
α

ðδP0 · uαÞ2τ20
2

λα: ð10bÞ

Both performance measures depend on the scalar prod-
uct of the perturbation δP0 with the eigenmodes uα of L.
Such scalar products occur also when analyzing propaga-
tion of disturbances on networks [27]. To get more insight
on the typical network response, we define an ensemble of
perturbation vectors with hδP0iδP0ji ¼ δijhδP2

0i [28].
Averaging over that ensemble gives

hC∞1 i ¼
hδP2

0iτ20
2n

Kf1; ð11aÞ

hC∞2 i ¼
hδP2

0iτ20
2n

Kf−1: ð11bÞ

The network structure determines the performance mea-
sures via the spectrum of the weighted Laplacian of Eq. (3).
The latter depends on the network structure, i.e., its
topology and edge weights, as well as the internal dynamics
of the oscillators, which modifies the edge weights via

angle differences θð0Þi − θð0Þj determined by Pð0Þ. The way
all these ingredients determine average network fragility is,
however, simply encoded in Kf−1 and Kf1. We note that
Eq. (11a) appeared in a slightly different, but equivalent,
form in Ref. [3].
Box perturbation.—Next, we go beyond the δ perturba-

tions discussed so far [3–5] and consider a perturbation
that is extended, but still limited in time: δPðtÞ ¼
δP0ΘðtÞΘðτ0 − tÞ, with the Heaviside function ΘðtÞ ¼ 0,
t < 0 and ΘðtÞ ¼ 1, t > 0. Here also, the limit T → ∞ can
be taken in Eqs. (4). One obtains (see Supplemental
Material [20])

C∞1 ¼
X
α≥2

ðδP0 · uαÞ2
λ3α

ðλατ0 − 1þ e−λατ0Þ; ð12aÞ

C∞2 ¼
X
α≥2

ðδP0 · uαÞ2
λα

ð1 − e−λατ0Þ: ð12bÞ

As in Eqs. (10), both performance measures depend on
δP0 · uα. After averaging over the same ensemble of
perturbation vectors as above, Eq. (12) becomes (see
Supplemental Material [20])

hC∞1 i ¼ hδP2
0i
X
α≥2

λατ0 − 1þ e−λατ0

λ3α

≃
� hδP2

0iτ20Kf1/2n; λατ0 ≪ 1; ∀ α ;

hδP2
0iτ0Kf2/n; λατ0 ≫ 1;∀ α.

ð13aÞ

hC∞2 i ¼ hδP2
0i
X
α≥2

1 − e−λατ0

λα

≃
� hδP2

0iτ0Kf0/n; λατ0 ≪ 1;∀ α;

hδP2
0iKf1/n; λατ0 ≫ 1;∀ α.

ð13bÞ

Compared to Dirac delta perturbations, hC∞1 i now
depends on Kf2 when τ0 is the longest time scale. This
is because time-extended perturbations scatter through the
network before they are damped by L. Accordingly, they
depend on details of the network contained in higher
moments of the distribution of resistance distances, hence
on a generalized Kirchhoff index of higher order.
Noisy perturbation.—We finally consider fluctuating

perturbations characterized by zero average and second
moment δPiðt1ÞδPjðt2Þ ¼ δijδP2

0i exp½−jt1 − t2j/τ0� corre-
lated over a typical time scale τ0. Because this perturbation
is not limited in time, we consider C1;2ðTÞ at finite but large
T. Keeping only the leading-order term in T, we have (see
Supplemental Material [20])

C1ðTÞ ¼ T
X
α

P
i∈Nn

δP2
0iu

2
α;i

λαðλα þ τ−10 Þ þOðT0Þ; ð14aÞ

C2ðTÞ ¼ðT/τ0Þ
X
α

P
i∈Nn

δP2
0iu

2
α;i

λα þ τ−10
þOðT0Þ: ð14bÞ

The response is determined by the overlap of the
perturbation vector with the eigenmodes of L. The noise
amplitude δP2

0i is localized on the set Nn of noisy nodes.
Averaging over an ensemble of perturbations defined by all
permutations of the noisy nodes over all nodes (see
Supplemental Material [20]), hC1;2i is given by Eqs. (14)
with

P
iδP

2
0iu

2
α;i → hδP2

0i. If τ−10 lies inside the spectrum of
L, C1;2 are functions of the spectrum of L and the inverse
correlation time τ−10 . If, on the other hand, τ−10 lies outside
the spectrum of L, averaged measures are directly express-
able as infinite sums over generalized Kirchhoff indices,

hC1;2i ¼ n−1hδP2
0iT

P∞
m¼0 C

ðmÞ
1;2 , with

CðmÞ
1 ¼

� ð−1Þmτðmþ1Þ
0 Kf−mþ1; λατ0 < 1;

ð−1Þmτ−m0 Kfmþ2; λατ0 > 1;
ð15aÞ

CðmÞ
2 ¼

� ð−1Þmτm0 Kf−m; λατ0 < 1;

ð−1Þmτ−ðmþ1Þ
0 Kfmþ1; λατ0 > 1.

ð15bÞ
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Numerical simulations.—To confirm our results numeri-
cally, we focus on C1 for both box and noisy perturbations,
varying their time scale τ0. We consider Eq. (1) with two
types of networks: (i) small-world networks, where a cycle
graph with constant coupling bij ¼ b0 for any node i to its
four nearest neighbors undergoes random rewiring with
probability p ∈ ½0; 1� [29,30], and (ii) simple cyclic net-
works, where each node is coupled to its nearest and qth
neighbors with a constant coupling bi;i�1 ¼ bi;i�q ¼ b0
(see inset in Fig. 2). In both cases, we fix the number of
nodes to n ¼ 50. In all cases, the unperturbed natural

frequencies vanish, Pð0Þ
i ¼ 0. The box perturbation has

δP0 ¼ ð0; 0;…; δP0i1 ; 0;…; δP0i2 ; 0;…Þ, with δP0i1 ¼
−δP0i2 ¼ 0.01b0, and averaging is performed over all pairs
of nodes ði1; i2Þ. The noisy perturbation acts on all nodes,
and we construct noise sequences PiðtÞ satisfying
δPiðt1ÞδPjðt2Þ ¼ δijδP2

0i exp½−jt1 − t2j/τ0� using the
method described in Ref. [31], with δP0i ¼ 0.01b0.
The theory is numerically confirmed for small-world

networks in Fig. 1, where C1 decreases monotonically as
the rewiring probability p increases, in complete agreement
with Eqs. (13a) and (14a) (colored solid lines). This is
qualitatively understood as follows. As p increases and
more network edges are rewired, more couplings with
longer range appear in the network, which stiffens the
synchronous state. Figure 1 shows that the resulting
decrease in fragility of synchrony occurs already with
p ≃ 0.1–0.2, where only few long-range couplings exist in
the network—true small-world networks [29]. Earlier
works showed that small-world networks have larger range
of parameters over which synchrony prevails, compared to
random networks [12]. Figure 1 shows that, additionally,

synchronous states in small-world networks are more
robust than in regular networks.
Further insight into synchrony fragility is obtained when

considering our cyclic graph model with nearest- and qth-
neighbor coupling. If the range of the coupling were the
only ingredient determining the fragility of the synchro-
nous state, then one would observe a monotonic decrease of
C1 as a function of q. Fig. 2 shows numerical results for the
cyclic graphs and five values of τ0 ranging from λατ0 ≲ 1 to
λατ0 ≳ 1, ∀α. Analytical results of Eqs. (13a) and (14a), in
particular, the crossover from hC∞1 i ∼ Kf1 to hC∞1 i ∼ Kf2
predicted in Eq. (13a) when τ0 increases, are clearly
confirmed. Particularly remarkable is that Kf1 and Kf2
are not monotonous in the coupling range q (see
Supplemental Material [20]), which is clearly reflected
in the behavior of hC∞1 i. This unambiguously demonstrates
that average fragility of synchrony does not depend trivially
on the range of the couplings between oscillators, but is
entirely determined by generalized Kirchhoff indices.
Conclusion.—Using both performance measures defined

in Eqs. (4), we have expressed synchrony fragility in terms
of theweighted Laplacian matrix L of the system’s network.
We have first shown that the response to specific perturba-
tions is determined by both the spectrum of L and its
eigenmodes uα through their scalar product δP0 · uα with
the perturbation vector. Equations (10), (12), and (14)
clearly indicate that perturbations overlapping with the
eigenmodes with smallest Lyapunov exponents have the
largest impact on the synchronous state. The most vulner-
able nodes are accordingly identified as the nodes carrying
these eigenmodes. Second, we considered performance
measures averaged over ergodic ensembles of perturbations.

FIG. 1. Performance measure hC∞1 i (for box perturbation, left
panel) and C1/T (for noisy perturbation, right panel) for the small-
world model with n ¼ 50 nodes as a function of the rewiring
probability p [29] and with τ0 ¼ 0.1/b0 (black), 0.5/b0 (blue),
1/b0 (red), 10/b0 (green), and 50/b0 (violet). Solid lines give
Eqs. (13a) (left) and (14a) (right) calculated numerically over an
ensemble of networks obtained from 20 different rewirings. The
dotted-dashed lines give Kf1 and the dashed lines Kf2, both
vertically shifted. In the right panel, C1ðTÞ is averaged over
T 0 ∈ ½T − 200/b0; T þ 200/b0� with T ¼ 800/b0, and error bars
give the standard deviation of numerically obtained values with
10 different noise sequences.

FIG. 2. Performance measure hC∞1 i (for box perturbation, left
panel) and C1/T (for noisy perturbation, right panel) for the cyclic
graph with n ¼ 50 nodes with nearest- and qth-neighbor cou-
pling, bi;i�1 ¼ bi;i�q ¼ b0, as a function of q and with τ0 ¼
0.1/b0 (black), 0.5/b0 (blue), 1/b0 (red), 10/b0 (green), and 50/b0
(violet). Solid lines give Eqs. (13a) (left) and (14a) (right). The
dotted-dashed lines give Kf1 and the dashed lines Kf2, both
vertically shifted. In the right panel, C1ðTÞ is averaged over
T 0 ∈ ½T − 200/b0; T þ 200/b0� with T ¼ 800/b0, and error bars
give the standard deviation of numerically obtained values with
10 different realizations of noisy perturbations. The inset sketches
the model for n ¼ 8 and q ¼ 3.
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In this case, they depend on L only through generalized
Kirchhoff indices, whichwe introduced in Eq. (9). The latter
are both spectral and topological in nature, as they can be
reexpressed in terms of the resistance distances in the virtual
network defined by L (see Supplemental Material [20]). A
network’s average or global fragility can therefore be easily
quantified by a direct calculation of generalized Kirchhoff
indices. This is a computationally easy task, requiring in
most instances to determine few of the smallest eigenvalues
ofL, and that, for a given system, can be done for few typical
fixed points once and for all. Our findings are rather general
and generalized Kirchhoff indices naturally characterize the
fragility of synchronous states for many coupled dynamical
systems, both beyond the Kuramoto model considered here
as well as for other types of perturbation not discussed here
(see Supplemental Material [20]).
Two extensions of this work should be considered. First,

our approach has been based on the implicit assumption
that the perturbation is sufficiently weak, such that the
system stays close to its initial state. Criteria for acute
vulnerability should account for the breakdown of this
assumption and quantify the perturbation threshold above
which networks either lose synchrony or change their
synchronous state. Second, synchrony fragility for sec-
ond-order systems with inertia should be considered,
investigating in particular more closely the case of electric
power grids under the influence of fluctuating power
injections [32]. Work along those lines is in progress.
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