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The interaction between nuclear spins in a molecule is exceptionally sensitive to the physics beyond the
standard model. However, all present calculations of the nuclear spin-spin coupling constant J are burdened
by computational difficulties, which hinders the comparison to experimental results. Here, we present a
variational approach and calculate the constant J in the hydrogen molecule with the controlled numerical
precision, using the adiabatic approximation. The apparent discrepancy with experimental result is
removed by an analysis of nonadiabatic effects based on the experimental values of the J constant for HD,
HT, and DT molecules. This study significantly improves the reliability of the NMR theory for searching
new physics in the spin-spin coupling.
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Introduction.—The line splitting observed in a nuclear
magnetic resonance (NMR) experiment is one of the
smallest splittings directly observed in molecular spectros-
copy. It results from the indirect interaction between
nuclear spins [1]. Typically, the magnitude of the nuclear
spin-spin coupling constant J is many orders of magnitude
smaller than the energy of the fundamental rotational
excitation. The indirect spin-spin interaction of nuclei
was discovered by Hahn and Maxwell [2] and independ-
ently by McNeil, Slichter, and Gutowsky [3] in 1951. In the
HD molecule, the J coupling (≈43 Hz) was first observed
by Carr and Purcell [4]. The most accurate measurements,
reported by Neronov et al. [5,6] and recently by Garbacz
et al. [7,8], reach the accuracy of 0.01 Hz. Because of its
extreme smallness, the J coupling is potentially sensitive to
the physics beyond the standard model (BSM). In particu-
lar, it could yield constraints on anomalous spin-dependent
axion-nucleon interactions at the atomic scale [9], which
are several orders of magnitude more stringent than those
inferred from any other sources [10,11].
In order to test the accuracy of NMR theory and to search

for BSM physics, the high accuracy measurements must be
put together with equally accurate theoretical predictions.
In this Letter we report on high-precision calculations of J
in the adiabatic approximation, analyze nonadiabatic
effects by comparison with experimental values for HD,
HT, and DT molecules, and estimate the relativistic and
QED corrections. Nonadiabatic effects, or more precisely,
the finite nuclear mass corrections, in spite of their
importance, have previously been completely omitted in
all the works devoted to the spin-spin coupling constant,
including those of Ref. [9].
Several calculations of the leading contribution to the

coupling constant J have been performed using methods
based on the one-electron approximation and direct use of

Ramsey’s formulas [12–15]. This standard approach is
widely implemented in quantum chemistry programs and
applied to many molecular systems. However, all the
presently developed methods ignore the fact that the
sum over intermediate states is only conditionally con-
vergent and therefore the numerical accuracy is difficult to
control. Here we demonstrate an algebraic elimination of
all the divergences. Transformed formulas lead to finite
results for a definite symmetry of intermediate electronic
states, and allow the variational approach to be employed
for all the second-order contributions, which in turn ensures
high numerical precision, in contrast to all the previous
approaches. Finally, we perform numerical calculations for
the hydrogen molecules using the explicitly correlated basis
functions. The difference of the obtained results with the
experimental values is explained in terms of the finite
nuclear mass effects.
Physics of the J coupling.—The theory of the nuclear

spin-spin interaction in a diatomic molecule was first
formulated by Ramsey [1]. His formula for the interaction
of nuclei A and B distant from each other by R, rewritten in
our notation, is

JðRÞI⃗A · I⃗B ¼ 2

�
HA

1

EðRÞ −H
HB

�

þ
X
a

e2

m
hA⃗ðr⃗aAÞ · A⃗ðr⃗aBÞi; ð1Þ

where the molecule is described by the clamped-nuclei
Hamiltonian

H ¼ p2
1

2m
þ p2

2

2m
þ V ð2Þ
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with (α is the fine structure constant)
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and energy EðRÞ. The interaction of the spin of nucleus X
(¼ A, B) with electrons is
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X
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and the vector potential A⃗ due to the nuclear magnetic
moment is

eA⃗ðr⃗aXÞ ¼ −
αgX
2MX

I⃗X ×
r⃗aX
r3aX

: ð5Þ

The electron and nucleus g factors, g and gX, the mass
ratios, and the other physical constants, are known to high
accuracy. So, in principle, the J coupling can be calculated
to high accuracy too. However, Ramsey’s formula has
several limitations. In particular, it does not account for
relativistic nor QED effects and to the best of our knowl-
edge nobody so far has described these effects in a
complete manner. More importantly, the lack of the
relativistic correction is responsible for the exponential
growth of JðRÞ ∼ expð2RÞ, so Ramsey’s formula loses its
validity at large R. Another limitation of this formula is the
neglect of the finite nuclear masses and we shall discuss
this issue later on.
The total spin-spin coupling J is conventionally split into

four parts, namely, the Fermi-contact (FC), paramagnetic
spin-orbit (PSO), spin-dipole (SD), and diamagnetic spin-
orbit (DSO) terms:

J ¼ JFC þ JSD þ JPSO þ JDSO: ð6Þ

Since the electronic wave function for the hydrogen mol-
ecule is a product of a spatial and spin singlet functions, all
the electron spin operators can be replaced by their differ-
ence, namely, s⃗1 → ðs⃗1 − s⃗2Þ/2. Next, using the identity
hðs1−s2Þiðs1−s2Þji¼δij and κ ¼ mα6gAgBm2/ðMAMBÞ,
these parts can be expressed as

JFC ¼ g2κ
72

�
Q1ðAÞ

1

E −H
Q1ðBÞ

�
; ð7Þ

JPSO ¼ κ

6

�
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�
; ð8Þ

JSD ¼ 3g2κ
32
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Qij
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1
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�
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JDSO ¼ κ
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�
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where

Q1ðAÞ ¼ 4π½δ3ðr1AÞ − δ3ðr2AÞ�; ð11Þ

Q⃗2ðAÞ ¼
r⃗1A
r31A

× p⃗1 þ
r⃗2A
r32A

× p⃗2; ð12Þ

Qij
3 ðAÞ ¼

rij1A
r51A

−
rij2A
r52A

; ð13Þ

and where rij ≡ rirj − ðδij/3Þr2.
Conditional convergence.—There is at least one subtle

point in the numerical evaluation of these second-order
matrix elements. The resolvent 1/ðE −HÞ is conventionally
replaced with a sum over states or pseudostates expressed
in terms of some basis functions. This sum is only condi-
tionally convergent. For example, the separate sums over
gerade and ungerade states for HD molecule are divergent.
It is because the exact perturbed wave function ϕ̃ ¼
ðE −HÞ−1Q1ðBÞϕ behaves as ∼1/r1B for small distances
from nucleus B. Now, if we impose the gerade or ungerade
symmetry, the perturbed wave function contains
1/r1B � 1/r1A. It becomes an ill-defined expression when
multiplied by the Dirac δðr1AÞ from Q1ðAÞ, which appears
as the divergence of the separate sums over gerade or
ungerade pseudostates. So, if the sum over intermediate
states is only conditionally convergent, the second-order
matrix elements of Eqs. (7)–(9) may give an arbitrary value.
For this reason, we transform the second-order matrix
elements to a more regular form, which provides several
advantages over the original one. First of all, the regular-
ized individual parts take finite values, which removes the
problem of cancellation of infinities. Second, the regulari-
zation enables symmetric second-order quantities with a
well-defined lower bound to be formed, which gives the
opportunity to employ the variational principle and opti-
mize the nonlinear parameters for each individual matrix
element. Finally, the regularized matrix elements exhibit
significantly faster convergence with the growing size of
the basis. All together, these three features allow highly
accurate results to be obtained even with relatively small
basis sets.
Regularization.—The regularization procedure goes as

follows [16]. LetQ be an operator to be regularized. We can
assume that it depends only on single electron variables
Q ¼ Qðr⃗1Þ. In all the considered cases one can find an
operator Q̃ such that −∇2

1Q̃≡ −½∇1; ½∇1; Q̃�� ¼ Q, so

Q ¼ −ð∇2
1 þ∇2

2ÞQ̃ ¼ ½Q�r − 2fE −H; Q̃g; ð14Þ

where
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½Q�r ¼ 4ðE − VÞQ̃ − 2p⃗1Q̃p⃗1 − 2p⃗2Q̃p⃗2: ð15Þ

The second-order matrix elements are regularized follow-
ing the identity

�
QðAÞ 1

E −H
QðBÞ

�

¼
�
½QðAÞ�r

1

E −H
½QðBÞ�r

�
þ 2hQ0i; ð16Þ

where

Q0 ¼ ð∇2
1 þ∇2

2Þ½Q̃ðAÞQ̃ðBÞ�
− ∇⃗1½Q̃ðAÞ�∇⃗1½Q̃ðBÞ� þ ∇⃗2½Q̃ðAÞ�∇⃗2½Q̃ðBÞ�: ð17Þ

The FC part is regularized with

Q̃1ðAÞ ¼
1

r1A
−

1

r2A
; ð18Þ

the PSO part remains unchanged, and the SD part is
regularized with

Q̃ij
3 ðAÞ ¼

1

6

�
rij1A
r31A

−
rij2A
r32A

�
: ð19Þ

Finally, the first-order terms Q0 are further regularized
using Eq. (14) to reduce their singularities and improve
convergence of matrix elements.
Numerical results.—The variational wave function for

the electronic ground state,

ψð1Σþ
g Þ ¼

X
i

ciψ iðr⃗1; r⃗2Þ; ð20Þ

ψ i ¼ð1þ {̂Þð1þ P1↔2Þϕiðr⃗1; r⃗2Þ; ð21Þ
where {̂ and P1↔2 are the inversion and the electron
exchange operators, can be accurately represented in the
basis of explicitly correlated Gaussian (ECG) functions of
the form

ϕ ¼ e−a1Ar
2
1A−a1Br

2
1B−a2Ar

2
2A−a2Br

2
2B−a12r

2

: ð22Þ

The nonlinear a parameters are determined variationally for
every ECG basis function whereas the linear c parameters
are obtained from the solution of the generalized eigenvalue
problem. The primary advantage of the ECG type of
functions is that all integrals necessary for the calculations
of nonrelativistic and relativistic operators can be evaluated
efficiently as described in Ref. [17].
The regularized second-order matrix elements are split

into twelve parts with definite symmetry and the definite
electronic angular momentum n⃗ · L⃗, where n⃗ ¼ R⃗/R. These
intermediate states are 3Σþ, 1Σ−, 1Π, 3Π, 3Δ with definite g
or u symmetry. Each state is represented by 128-, 256-, and
512-term ECG functions with nonlinear a parameters
obtained by optimization of a pertinent second-order matrix
element with the symmetrized operator ½QðAÞ �QðBÞ�r.
Careful optimization at different basis length is crucial for
maintaining good control of numerical precision.
The numerical convergence with the progressing basis

length for JFC, JPSO, JSD, and JDSO parts at the equilibrium
distance R ¼ 1.4 a.u. is presented in Table I. The extrapo-
lated numerical result for the total value of J is in agreement
with previously published results but is considerably more
accurate. This is due to the separate optimization of the
gerade and ungerade basis, which was possible only after
the regularization of the second-order matrix elements.
JðRÞ is a fast growing function of the internuclear

distance R. For small R it may behave as ∼R−1 or ∼R0,
but we have not been able to resolve between these
two asymptotics. For large R, the JðRÞ goes like
∼R−5/2 expð2RÞ, which corresponds to the large-R asymp-
totic of the exchange energy [21]. This exponential growth
is unphysical and is due to the neglect of relativistic
corrections. The dependence of JðRÞ multiplied by
R expð−2RÞ is presented in Fig. 1.
Despite the fact that the JðRÞ curve flattens near the

equilibrium distance, the temperature effect is non-negli-
gible. Several of the lowest rotational states were included
in the Boltzmann formula to obtain the spin-spin coupling

TABLE I. Results of the extrapolation to a complete basis set limit and the comparison with previous calculations for individual
contributions to J (in Hz) for HD at Re ¼ 1.4 a.u. Analogous results for HT and DT can be obtained by rescaling the HD results with
pertinent ratios of nuclear magnetic moments. Physical constants taken from Ref. [18].

Basis set size JFC JPSO JSD JDSO J

128 40.175 433 0.837 338 5 0.443 388 −0.314 225 8 41.142 234
256 40.174 626 0.836 695 0 0.442 969 −0.314 231 1 41.140 059
512 40.174 148 0.836 668 3 0.442 731 −0.314 231 4 41.139 316
∞ 40.1741(3) 0.836 665(15) 0.442 70(12) −0.314 23 41.1392(3)
References
MCSCF [19] 40.186 0.818 0.438 −0.307 41.135
SOPPA(CCSD) [20] 40.19 0.76 0.50 −0.29 41.17
FCI [7] 40.1857 0.8360 0.4486 −0.3141 41.1563
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constant corresponding to 300 K. For the rotational
averaging we employed the Born-Oppenheimer interaction
potential [22] augmented by the adiabatic corrections of
[23], both obtained from highly accurate calculations with
the James-Coolidge functions. Table II presents averaged
results for temperatures of 0, 40, and 300 K with the
comparison to experimental results. Most importantly, we
observe a −0.19 Hz difference between the experiments
and our calculation for the HD molecule. For HT and DT
this difference amounts to −1.06 and −0.09 Hz, respec-
tively. We note that our results are obtained using adiabatic
approximation and the theoretical uncertainty does not
include effects due to the finite nuclear mass of the order of
Oðm/μnÞ. These effects, not yet considered in the literature,
are responsible for the above mentioned differences. One
partially includes them through the averaging of JðRÞ with
the nuclear vibrational function χðRÞ,

J ¼
Z

d3RJðRÞ χ�ðRÞ χðRÞ; ð23Þ

nevertheless, the neglected effects are of the order of the
ratio of the electron mass to the reduced nuclear massm/μn,
which, e.g., for the HD molecule is about 0.8 × 10−3.
Therefore, the use of Ramsey’s formula alone limits the
accuracy of J by at least m/μnJ ¼ 0.036 Hz. To obtain a
more reliable estimation, we replace the electron mass by
the reduced one μ ¼ mμn/ðmþ μnÞ in Ramsey’s formula.
Then, each Dirac δ in Eq. (7) scales as ðμ/mÞ3, the
nonrelativistic Hamiltonian in the denominator scales as
μ/m, and the total factor in the dominating JFC term is
ðμ/mÞ5. After expansion in the electron mass the finite
nuclear mass correction becomes −5m/μn J ¼ −0.18 Hz,
which is close to the difference with the experiment of
−0.19 Hz. Analogous estimation for HT and DT yields
−1.09 and −0.10 Hz in comparison with discrepancy
between experiment and theory equal to −1.12 and
−0.09 Hz.
From the other side, the finite nuclear mass effects can be

inferred from experimental values for different isotopes [8]
as follows. Let us subtract from the experimental values
Jexptð300 KÞ the theoretical predictions Jð300 KÞ and
rescale the remainder by magnetic moments of nuclei to
that of HD. Such normalized remainders δJ̃ differ due to
different value of the reduced nuclear mass, as shown on
Fig. 2. This dependence agrees with the expected behavior
of ∼1/μn, which is demonstrated by the fitted functions. We
do not aim to analyze in detail different fits because of large
experimental uncertainties, but we claim that the finite
nuclear mass effects account for the difference between
theoretical predictions and experimental results, and should
be precisely calculated prior looking for BSM physics
in the spin-spin coupling [9]. These very challenging
calculations can be performed using the nonadiabatic
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FIG. 1. Nuclear spin-spin interaction JðRÞ times R expð−2RÞ in
Hz as a function of internuclear distance R in a.u., the equilibrium
distance is near 1.4 a.u.

TABLE II. Theoretical predictions in adiabatic approximation
at T ¼ 300 K compared to experimental value. The difference is
interpreted as a finite nuclear mass correction of order Oðme/μnÞ.
Results for T ¼ 40 K are from Ref. [9] and our theoretical
predictions are presented for the comparison with that work.
Theoretical uncertainties are purely numerical, and thus do
not include those due to nonadiabatic, relativistic, and QED
corrections.

Ref. HD HT DT

JBOðReÞ This work 41.1392(3) 285.857(2) 43.8807(3)
δJð0 KÞ 1.9680(9) 12.869(6) 1.5546(7)
δJð300 KÞ 0.1995 1.3918 0.2153
Jð300 KÞ 43.3067(9) 300.117(6) 45.6506(9)
Jexptð300 KÞ [8] 43.12(1) 299.06(36) 45.56(2)

[5,6] 43.115(9)
[24] 43.130(15)

δJð40 KÞ This work 0.0100
Jð40 KÞ 43.1172(9)
Jexptð40 KÞ [9,24] 42.94(4)

DT

HT

HD
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1
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J

FIG. 2. The rescaled remainder of the nuclear spin-spin
interaction δJ̃ in Hz as a function of the reduced nuclear mass.
The fitted curve (in blue) is of the form A/μn þ B/μ3/2n , while the
linear fit (in red) is J0 þ C/μn, with J0 ¼ 0.043 Hz.
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perturbation theory [25], or by using the fully nonadiabatic
approach with explicitly correlated Gaussian or exponential
functions. In both cases, one should include additional
electron-nucleus interactions not accounted for in
Ramsey’s formula.
Regarding other possible sources of theoretical uncer-

tainties, the relativistic correction for the HD molecule at
the equilibrium distance has been estimated numerically by
Helgaker et al. [7] as being of the order of 0.01 Hz. Our
estimation of this correction is 3α2JFC ≈ 0.006 Hz, which
is twice the relativistic (so called Breit) correction to the
hyperfine splitting in atomic hydrogen. Moreover, the
radiative correction to J, again from the hydrogenic hyper-
fine splitting is 2ðln 2 − 5

2
Þα2JFC ¼ −0.0077 Hz. Both cor-

rections, regardless of the fact that they compensate each
other to a large extent, are negligible at present.
Summary.—The main results of this work are the

development of a new computational method for the
spin-spin coupling constant J including algebraic elimina-
tion of all singularities, the highly precise calculation for
HD, HT, and DT molecules, and the resolution of the
observed difference with experimental results in terms of
finite nuclear mass effects. We established a benchmark,
which is a reliable starting point for accurate evaluation of
finite nuclear mass, relativistic, and QED corrections.
Moreover, we notice that the proposed regularization
and variational optimization of the basis functions can
be applied to other molecules enabling high-precision
numerical results and the possibility to search for BSM
physics in heavier systems, where it is significantly
enhanced.
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