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Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology,
chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact
thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have
been discovered and provided critical insights. These fluctuation theorems are generalizations of the second
law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of
the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and
overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be
obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states,
and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and
initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.
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In the past two decades, there were significant develop-
ments in nonequilibrium statistical mechanics of small
systems in which thermal fluctuation is influential [1]. The
most prominent progress is the discovery of various
fluctuation theorems (FTs), which connect microscopic
dynamics with thermodynamic behaviors [1]. These FTs,
such as the Jarzynski equality (JE) [2,3] and the Crooks
fluctuation theorem (CFT) [4,5], reformulate the inequality
of the second law into equalities and reveal the universal
laws that the fluctuating thermodynamic variables must
obey in processes arbitrarily far from thermal equilibrium.
As they are refinements of the second law on individual
trajectories, they provide critical understanding of behav-
iors of biological systems at the single molecular level
[3,5–10] and nonequilibrium dynamics of a wide range of
physical systems [11–28]. While JE and CFT are valid for
processes far from thermal equilibrium, they require the
initial state to be in a thermal equilibrium state.
In 2000, a differential fluctuation theorem (DFT) con-

necting the joint probabilities of entropy production and
arbitrary generalized coordinates (e.g., position and velocity
coordinates) was derived by Jarzynski [29]. An equivalent
DFT for work was derived by Nobel laureate Karplus and
co-workers in 2008 [20]. It is remarkable that the DFT can
unify various FTs as long as detailed balance is not violated
[20] (see Fig. S1 in the Supplemental Material [30] for the
relation between different fluctuation theorems). The DFT
also leads to a generalized Jarzynski equality (GJE) for

arbitrary initial states [24]. Such an ability is rooted from the
fact that most FTs originate from the same fundamental
principle: the microscopic reversibility connecting forward
and reverse trajectories [1,18,24,29,31–33]. Testing the
DFT and other FTs would deepen our understanding of
the second law and nonequilibrium physics, including
dissipation [19], hysterisis [34], and irreversibility [35].
In order to test the DFTat its desired level of detail, we need
large statistics and the ability to track individual trajectories
of a stochastic process in the phase space [20], which
requires the measurement of instantaneous velocities of
Brownian motion [36].
In this work, we experimentally test the differential

fluctuation theorem [20,29] using an optically levitated
nanosphere which can be trapped in air continuously for
weeks for acquiring large sets of data. Our ultrasensitive
optical tweezer can measure both instantaneous position
and instantaneous velocity [36] of a levitated nanosphere to
test DFT. Over one million experimental cycles per setting
(∼1010 position data points per setting with a 10-MHz
acquisition rate) provide sufficient statistics to validate the
DFT at its desired level of detail, e.g., testing DFT for
nonequilibrium processes connecting two points in the
position-velocity space [20]. Several fluctuation theorems,
including the JE [2,3], the CFT [4,5], the Hummer-Szabo
relation (HSR) [6–8], the GJE [19,24,31], the extended
fluctuation relation (EFR) [9,10], and the fluctuation
theorem for ligand binding (FTLB) [37] can be unified
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by the DFT [18,24,31,32]. We have also tested several such
theorems. In our experiment, the air pressure can be
adjusted to test these theorems in both underdamped and
overdamped regimes. This study demonstrates a powerful
approach applicable in exploring a wide range of non-
equilibrium systems [3,5–13,15,16] since a complete
description of the stochastic system includes the informa-
tion of both position and velocity.
Our experiments are carried out using a silica nanosphere

levitated by a 1550-nm optical tweezer [Fig. 1(a)] [38]. The
nonequilibrium processes are controlled by a force param-
eter f which is an optical force exerted on the nanosphere
by a 532-nm laser beam. In a forward process, the optical
force is ramped from foff at time t1 to fon at time t2. The
reverse process is from t3 to t4. The DFT connects the
forward and reverse processes as [20,29]

PRð−W; b� → a�Þ=PFðW; a → bÞ ¼ e−βðW−ΔFÞ; ð1Þ
where a, b can be arbitrary generalized coordinates. In our
work, a and b denote the position (x) and/or velocity (v)
coordinate of a levitated nanosphere; e.g., a can be x, or v,
or ðx; vÞ. PFðW; a → bÞ is the forward joint probability of
performing nonequilibrium work W for those trajectories
starting from a and ending at b, and PRð−W; b� → a�Þ is
the reverse joint probability. The work distribution PFðWÞ

can be obtained by integrating PFðW; a → bÞ over a and b.
The asterisk (*) denotes a reversal of the velocity compo-
nents of a or b. ΔF ¼ −ðf2on − f2offÞ=ð2kÞ is the free energy
difference between the equilibrium states of the optical
forces fon and foff . Here, k is the trap stiffness
β ¼ 1=ðkBTÞ, where kB is the Boltzmann constant, and
T ¼ 296 K is the room temperature.
To test the DFT in detail, over one million experimental

forward-reverse cycles (500 μs=cycle) are performed for a
given irreversible setting. Their distributions in the posi-
tion-velocity space are shown in Fig. 1(b). The driving
optical forces significantly shift the distributions away from
the undriven ones. The black curves in Fig. 1(b) are a few
examples of measured trajectories evolving from a given
point to a different point in the phase space during forward
(or reverse) processes. Because of thermal fluctuation, it is
not possible to have two trajectories starting from exactly
the same point in the phase space. Here we use ðx; vÞ to
represent points within ðx� ðσx=11Þ; v� ðσv=11ÞÞ, where
σx and σv are the standard deviations of the position and
velocity distributions, respectively.
Based on our large sets of experimental data and our

ability to measure both the instantaneous velocity and
position of a nanoparticle, we develop an efficient method
to prepare arbitrary nonequilibrium initial states by condi-
tionally selecting trajectories that start from the desired
initial states. Some examples of arbitrary nonequilibrium
initial states prepared by our information-based method are
shown in Fig. 2. They are used to test the DFT and the GJE
for arbitrary initial states.
Figure 3 shows our experimental results of testing DFT

with a 209-nm-radius nanopshere in the underdamped
regime (see the Supplemental Material [30] for more
information). The optical force [Fig. 3(a)] is monitored
using a fraction of the 532-nm laser split from the main
beam. Figures 3(b) and 3(c) show the dynamic evolution of
the nanosphere in the position and velocity coordinates,
respectively. Since the irreversible ramps (∼4.6 μs) are
faster than the velocity (∼8.6 μs) and position (∼100 μs)
relaxation times, the nanosphere is far from thermal
equilibrium when the ramps finish.
With the acquired position, velocity, and force data, the

DFT is ready to be tested. TheDFTinEq. (1) can be rewritten
in the position coordinate as ½ðPRð−W; x2 → x1ÞÞ=
ðPFðW; x1 → x2ÞÞ� ¼ ½ðPRðx2 → x1ÞÞ=ðPFðx1 → x2ÞÞ�×
½ðPRð−Wjx2 → x1ÞÞ=ðPFðWjx1 → x2ÞÞ� [20]. Here,
PFðx1 → x2Þ is the probability of having a forward trajectory
going from x1 to x2, and PRðx2 → x1Þ is the probability
of a reverse trajectory going from x2 to x1. These quantities
can be calculated using the distributions illustrated in
Fig. 1(b). They are essentially equivalent to the number of
forward (reverse) trajectories going from x1 to x2 (x2 to x1).
PFðWjx1 → x2Þ is the probability of performing workW for
those forward trajectories going from x1 to x2, and
PRð−Wjx2 → x1Þ is the reverse probability [Fig. 3(d)].

(a)

(b)

FIG. 1. (a) Experimental scheme. A silica nanosphere (blue
sphere) is trapped in an optical tweezer formed by a focused
1550-nm laser beam (magenta). A series of 532-nm laser pulses
(green) exerts an optical force on the nanosphere to drive
nonequilibrium processes. Within each pulse, an optical force
is rapidly ramped from foff at time t1 to fon at time t2 during the
forward process (green pulse). The reverse process from time t3
to t4 is the time-reversed correspondence of the forward process.
(b) An example of experimental data. Vertical slides represent
the measured time snapshots of the probability distributions
at times t1, t2, t3, and t4 as illustrated in (a). Black curves
represent experimental phase-space trajectories during forward
processes initialized at ðx1; v1Þ and finalized at ðx2; v2Þ, and
during reverse processes initialized at the ðx2;−v2Þ and finalized
at ðx1;−v1Þ. Here, x1 ¼ −19 nm, x2 ¼ 55 nm, v1 ¼ −7 mm=s,
and v2 ¼ 7 mm=s. The nanosphere is levitated in air at 50 torr,
and foff ¼ 0, fon ¼ 340 fN.
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Similarly, Fig. 3(e) shows examples of PFðWjv1 → v2Þ and
PRð−Wj−v2 → −v1Þ in the velocity coordinate. The minus
sign (−) in the velocity space is due to the time reversal
symmetry of the reverse process. Here, irreversible work is
calculated as W ¼ −

P
n−1
i¼1 ðfiþ1 − fiÞðxi þ xiþ1Þ=2 for n

successive position and force measurements. This formula is
obtainedusing theHamiltonianH ¼ 1

2
kx2 − fxþ 1

2
mv2 and

the work definition W ¼ R
τ
0 dt _fðtÞ½ð∂HÞ=ð∂fÞ� during a

ramp period τ [2].
The DFT is tested in detail using 121 different initial-

final combinations in the position and velocity coordinates
uniformly distributed in ð�σx;�σvÞ. Figure 3(f) shows that
the left-hand side ½ðPRð−W; x2 → x1ÞÞ=ðPFðW; x1 → x2ÞÞ�
agrees well with the right-hand side e−βðW−ΔFÞ of the DFT
in Eq. (1). Here, e−βðW−ΔFÞ is a function of the work
variableW. The free energy difference can be calculated as
ΔF ¼ −1.3kBT with foff=fon ¼ 0=340 fN [Fig. 3(a)].
Similarly, we can verify the DFT in the velocity coordinate
[Fig. 3(g)]. Data points also distribute closely to the curves
e−βðW−ΔFÞ. Thus, our data agree with the DFT well in
position and velocity coordinates simultaneously.
Our experimental data can also test other fluctuation

theorems which are direct integrations of the DFT [30].
Integrating Eq. (1) over W and b, we obtain the GJE for
delta initial distributions in the position or velocity coor-
dinates (a ¼ x or a ¼ v) [19,24,31],

FIG. 3. Testing the differential fluctuation theorem in the underdamped regime. (a) Optical force. (b),(c) Measured position and
velocity trajectories. A single trajectory is shown in blue, and the averaged trajectory of over one million trajectories is shown in red. The
gray shaded regions in (a)–(c) denote the forward and reverse intervals, respectively. It takes roughly 4.6 μs for the optical force strength
to switch from the 10% to 90% level. (d) An example of probabilities PFðWjx1 → x2Þ and PRð−Wjx2 → x1Þ in position coordinate.
(e) An example of probabilities PFðWjv1 → v2Þ and PRð−Wj−v2 → −v1Þ in velocity coordinate. The label of the horizontal axis in
(d) and (e) is WðkBTÞ. (f),(g) Testing the DFT in position and velocity spaces. The small markers with different colors represent
measurements of loge½ðPRð−W; x2 → x1ÞÞ=ðPFðW; x1 → x2ÞÞ� and loge½ðPRð−W;−v2 → −v1ÞÞ=ðPFðW; v1 → v2ÞÞ� for 121 different
fx1; x2g and fv1; v2g combinations, respectively. The big magenta markers are results for parameters shown in (d) and (e), respectively.
The black lines represent −βðW − ΔFÞ.

(a) (b)

(c) (d)

FIG. 2. Examples of arbitrary nonequilibrium initial states of
trajectory ensembles prepared by an information-based method.
(a) Nonequilibrium initial states with narrow distributions in
position or velocity. (b) An exotic nonequilibirum state with a
P-shaped distribution in the phase space. (c) Uniform distribution
within a rectangle (−15 nm < x < 0, −10 mm=s < v < 0) in the
phase space. (d) A microcanonical ensemble with the energy shell
1.3kBT < E < 1.35kBT. The number of experimental trajectories
started from each nonequilibrium initial state is labeled next to its
distribution.
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he−βðW−ΔFÞjxi ¼ xiF ¼ PRðxf ¼ xÞ=PFðxi ¼ xÞ;
he−βðW−ΔFÞjvi ¼ viF ¼ PRðvf ¼ −vÞ=PFðvi ¼ vÞ: ð2Þ

Here, PFðxi ¼ xÞ is the probability that a forward trajectory
initializes at x, and PRðxf ¼ xÞ is the probability that a
reverse trajectory finalizes at x. We use subscripts “i” and
“f” to denote “initial” and “final,” respectively. Similarly,
PFðvi ¼ vÞ and PRðvf ¼ −vÞ are the probabilities in the
velocity coordinate. They are proportional to the number of
trajectories initialized (finalized) at x or v [Fig. 2(a)]. The
value he−βðW−ΔFÞjxi ¼ xðor vi ¼ vÞiF is averaged over all
forward trajectories initialized at x or v in the position or
velocity coordinates. The data agree well with the GJE as
shown in Figs. 4(a) and 4(b). For slow ramps, the measured
he−βðW−ΔFÞjxiðor viÞiF stays closely to 1, which is the
result of a reversible process. However, for fast (irrevers-
ible) ramps, the values of he−βðW−ΔFÞjxiðor viÞiF diverge
away from 1, so the GJE is needed to explain our
observations.
Similarly, integrating Eq. (1) over W and a leads to the

HSR [30] in the position and velocity spaces (b ¼ x or
b ¼ v) [6,19,20],

he−βðW−ΔFÞjxf ¼ xiF ¼ PRðxi ¼ xÞ=PFðxf ¼ xÞ;
he−βðW−ΔFÞjvf ¼ viF ¼ PRðvi ¼ −vÞ=PFðvf ¼ vÞ: ð3Þ

Here, he−βðW−ΔFÞjxf ¼ xðor vf ¼ vÞiF, PFðxf ¼ xÞ, and
PRðxi ¼ xÞ are denoted using the same conventions as in
the GJE in Eq. (2). The data agree well with the HSR for
both fast (irreversible) ramps and slow (reversible) ramps as
shown in Figs. 4(c) and 4(d).
Integrating Eq. (2) over initial phase-space points with an

arbitrary initial distribution, one obtains the GJE for
arbitrary initial states proposed in Ref. [24]

he−βðW−ΔFÞiPiniðxi;viÞ ¼
Z

PRðxf ¼ x; vf ¼ −vÞ
PFðxi ¼ x; vi ¼ vÞ

× Piniðxi ¼ x; vi ¼ vÞdxdv; ð4Þ

where Piniðxi; viÞ indicates an arbitrary initial distribution
in phase space. We test Eq. (4) for the thermal equilibrium
initial state and three representative nonequilibrium initial
states as shown in Figs. 2(b)–2(d). The results are shown in
Table I. The left-hand side (lhs) and right-hand side (rhs) of
Eq. (4) agree well with each other within the experimental
uncertainty.
With our experimental data, we can test JE [2] and CFT

[4] with high precision. The results are shown in Fig. S2 in
the Supplemental Material [30]. For completeness, we also
tested the DFT in the overdamped regime (a ¼ x1 and
b ¼ x2) where the velocity relaxes to equilibrium much
faster than other processes. As shown in Fig. S3 in the
Supplemental Material [30], our experimental data show
good agreement with HSR [6], the DFT [20], and the GJE
[19,24]. Overall, the differential fluctuation theorem unifies
many existing fluctuation theorems [9,10,18,24,31,32,37],
such as JE, CFT, HSR, GJE, EFR, and FTLB, and is
arguably the most detailed fluctuation theorem that can be
tested experimentally. The DFT can also improve free
energy calculations [20]. Our experimental results validate
the DFT [20] well in both underdamped and overdamped
regimes. Our work deepens our understanding of the
second law to an unprecedentedly detailed level. It initiates
the experimental study of stochastic thermodynamics with

(a) (b)

(c) (d)

FIG. 4. Testing fluctuation theorems in the underdamped
regime. (a),(b) Testing GJE in position and velocity spaces for
a fast ramp (red, 4.6 μs from 10% to 90% levels) and a slow ramp
(blue, 40 μs from 10% to 90% levels). Markers represent the
measured PRðxf¼xÞ=PFðxi¼xÞ and PRðvf ¼ −vÞ=PFðvi ¼ vÞ
in position and velocity spaces, respectively. (c),(d) Testing HSR
in position and velocity spaces for a fast ramp (red) and
a slow ramp (blue). Markers represent the measured
PRðxi¼xÞ=PFðxf¼xÞ and PRðvi¼−vÞ=PFðvf¼vÞ in position
and velocity spaces, respectively. The error bars of PRðxÞ=PFðxÞ
and PRð−vÞ=PFðvÞ represent the standard deviation of the
measurements for 20 equal divisions in each subset x and v,
respectively. The markers represent their mean values. In (a)–(d),
the shaded line represents he−βðW−ΔFÞi, where its thickness
represents the uncertainty of 600 work (Joule) calibrations.

TABLE I. Test of the GJE for arbitrary initial states. The
thermal equilibrium state and three representative nonequilibrium
initial states shown in Figs. 2(b)–2(d) are chosen for the test. The
second and third rows show the data of the lhs and rhs of Eq. (4)
for each initial state, respectively.

Initial
state

Thermal
equilibrium

P-shaped state
[Fig. 2(b)]

Uniform
distribution
[Fig. 2(c)]

Microcanonical
ensemble
[Fig. 2(d)]

lhs 1.02� 0.02 0.92� 0.02 1.42� 0.03 1.08� 0.02
rhs 1 0.90 1.42 1.07
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instantaneous velocity measurements and may shed new
light on our understanding of the origin of time’s arrow
[34]. Once cooled to the quantum regime, a levitated
nanosphere in vacuum can be used to investigate quantum
nonequilibrium thermodynamics in the mesoscopic regime
[39]. This system can also be used to study the effects of
geometry in thermodynamic control [40].
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