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The recently noticed ability of restart to reduce the expected completion time of first-passage processes
allows appealing opportunities for performance improvement in a variety of settings. However, complex
stochastic processes often exhibit several possible scenarios of completion which are not equally desirable
in terms of efficiency. Here we show that restart may have profound consequences on the splitting
probabilities of a Bernoulli-like first-passage process, i.e., of a process which can end with one of two
outcomes. Particularly intriguing, in this respect, is the class of problems where a carefully adjusted restart
mechanism maximizes the probability that the process will complete in a desired way. We reveal the
universal aspects of this kind of optimal behavior by applying the general approach recently proposed for
the problem of first-passage under restart.
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Stochastic processes subject to restart appear in many
disciplines including physics, chemistry, biology, and
computer science. Restart means a sudden interruption
of a process followed by its starting anew. In some contexts,
the restart is an integral part of a phenomenon under study
(e.g., substrate unbinding in enzymatic reactions [1] and
recovery of RNA polymerase from the backtracked state
[2]), while in others it plays the role of an external control
tool (e.g., reinitialization of a randomized computer algo-
rithm [3,4] and reduction of growing tumor to its initial size
by chemical treatment [5]).
A significant amount of research has been dedicated to

the study of the effect of a restart on first-passage proper-
ties. The growth of interest in this problem was triggered by
the surprising observation that a restart may significantly
reduce the mean first-passage time (MFPT). In recent years,
it has been demonstrated in a range of diverse examples that
a carefully chosen restart rate can bring the MFPT to a
minimum [6–14]. Along with the investigation of particular
cases, we witness ongoing attempts to reveal the general
principles allowing us to navigate in a vast space of first-
passage problems under restart. A remarkable result of
these attempts is the discovery of universality displayed by
all optimally restarted processes [15–17].
To the best of our knowledge, the first-passage process

under restart considered so far had only one way of
completion. In particular, a diffusion mediated search with
stochastic resetting to the initial position [6]—a classic
example of a first-passage problem under restart—ends if
and only if a searcher finds a target. However, real-life
settings often offer a variety of possible ways in which
stochastic process can be completed. Plurality of the
process outcomes may arise from the competition among
several different first-passage phenomena or due to multi-
ple thresholds for one and the same first-passage

mechanism. Assume, for instance, that a gambler stops
playing after winning a certain amount of money or getting
ruined, whichever happens first [18,19]. In many-target
search problems and diffusion-limited reactions, different
completion scenarios may correspond to the finding of
different targets [20–29]. In search problems with time
constraints, a search process can finish either by target
detection or by searcher or target death [30–38]. When
there are several competing paths of chemical reaction, an
individual molecule may be converted into one product
or another, depending on which path has been realized
[39–41]. Similarly, a biopolymer molecule may fold along
one of many possible pathways to one of multiple native
states [42–47]. In evolutionary biology and ecology, one
could ask if a population goes extinct before its size attains
some threshold level [48,49]. Clearly, the immense set of
possibilities is not limited to these few examples.
What happens when a first-passage process with several

possible outcomes becomes subject to a restart? The main
goal of this Letter is to draw attention to a previously
unknown type of optimal behavior in first-passage phe-
nomena: a carefully chosen rate of Poisson restart brings
the probability of observing a particular completion sce-
nario to a maximum (or minimum). In other words, we
argue that a stochastic restart could optimize the so-called
splitting probabilities [50,51]. The effect is first illustrated
in a particular example, and after that, we apply a general
framework recently proposed in Ref. [17] by Pal and
Reuveni to gain a deeper insight. For the sake of simplicity,
we focus on the case where the process has exactly two
possible outcomes, but the analysis can be directly
extended to a more general situation. We show that the
optimality of splitting probabilities always entails an exact
match between the unconditional and conditional mean
completion times of the process. Looking for further
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generalization, we go beyond the assumption of a Poisson
restart and demonstrate advantage of the deterministic
restart strategy in terms of attaining the most pronounced
extrema of splitting probabilities.
The key properties of a first passage under restart have

originally been learned from the one dimensional diffusion
process [6]. We will use the same exemplary case to
demonstrate the ability of a restart to optimize the splitting
probabilities. Specifically, let us consider a mortal
Brownian searcher with the diffusion constant D and the
mortality rate α that starts from the initial position x0 ≥ 0.
The search process ends either when the searcher dies or
when it finds the immobile target located at x ¼ 0. It is
shown in Ref. [32] (see also [37]) that target detection

occurs with the probability p ¼ e−
ffiffiffiffiffiffiffiffiffi
αx2

0
/D

p
. Assume now

that the process is stochastically restarted; i.e., the searcher
is returned to its initial position x0 at some constant rate r
[52]. What is the detection probability pr in the presence of
a restart? The exact solution of the initial-boundary value
problem for the probability density of the searcher’s
position yields (see Supplemental Material [53])

pr ¼
rþ α

αe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþαÞ/D

p
x0 þ r

: ð1Þ

Analyzing Eq. (1), one can readily see that if
α ≥ α0 ¼ ðz�Þ2D/x20, where z

� ≈ 1.59362… is the solution
to z/2 ¼ 1 − e−z, then pr monotonically decreases as r
increases from zero to infinity. Otherwise, when α < α0,
the probability pr takes its maximum at the nonvanishing
restart rate r0 ¼ α0 − α. In Fig. 1 we plot pr as a function of
r/α0 for different α/α0.
Let us give a qualitative explanation for the observed

behavior of pr. If α is large compared to D/x20, then the
typical size of the region explored by the searcher during its
lifespan is less than the initial distance to the target, and
thus, a nonvanishing restart inevitably leads to a reduction
of the search efficiency. Otherwise, when α is small in

comparison withD/x20, the searcher lives long enough to be
able to reach the target via a typical diffusive path, but it is
also able to execute a distant excursion in empty areas of
the search space. These excursions prolong the search
process and typically end with searcher death. Then, the
nonvanishing restart rate censors the fatal paths and
increases chances to find the target. On the other hand,
too large of a restart rate hinders target detection, since the
searcher has less time between restarts to reach the origin
under the same mortality rate. This is why a nonvanishing
optimal restart rate r� exists, which brings the probability
that the searcher will find the target before dying to a
maximum.
Having examined the exemplary case, we now turn to a

more general setting. Let us consider a generic stochastic
process that can end in two different ways and is subject to
a generic restart mechanism. For the sake of convenience
wewill call one of the two possible outcomes “success” and
the other “failure.” Thus, the problem can be viewed as kind
of a Bernoulli experiment, see Fig. 2(a). In the example
discussed above, detection of the target naturally corre-
sponds to success, while the searcher’s death is interpreted
as failure. Obviously, in other contexts, these conventional
terms may not have any real meaning.
The original process is characterized by a random

completion time T having the probability distribution
PðTÞ. The later can be decomposed into a sum PðTÞ ¼
PsðTÞ þ PfðTÞ, where PsðTÞ and PfðTÞ are the probability
densities of successful and failed trials, respectively.
Normalization of the probability density PsðTÞ defines
the “unperturbed” probability p of success: p ¼R
∞
0 PsðTÞdT. We will also utilize the trivial fact that the
ratio PsðTÞ/PðTÞ gives the probability of success in a trial
with the completion time T [54].
Being subject to restart, the process can be interrupted at

a random time R, characterized by a proper probability
distribution PrðRÞ, and started again. The probability pr of
success for the restarted process can be computed as the
expectation of a binary random variable x, which takes the
value 1 if the process is successfully completed and is equal

FIG. 1. (Left) The probability of target detection pr versus the
rate r of Poisson restart for different values of the searcher’s
decay constant α. (Right) Optimal restart rate as a function of the
decay constant.

draw two random
times: T and R

check if
T<R

No Yes

repeat toss a coin to
determine if y =1T

return x=0
(failure)

return x=1
(success)
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(b)

Start

Success
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first-passage
process
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FIG. 2. (a) Bernoulli-like first-passage process under restart.
(b) Pseudocode representation of Eq. (2).
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to 0 in the case of failure. This variable obeys the following
renewal equation:

x ¼ IðT < RÞyT þ IðT ≥ RÞx0; ð2Þ

where IðT < RÞ ¼ 1 − IðT ≥ RÞ is an indicator random
variable that is equal to unity when T < R and is zero
otherwise; x0 is an independent and identically distributed
copy of x, and yT is an auxiliary binary variable that takes
the value one with the probability PsðTÞ/PðTÞ.
The intuition behind Eq. (2) is very simple. Imagine that

we run a computer simulation designed to reproduce
behavior of the random variable x, see Fig. 2(b). At the
first step, we should choose two random times from the
distributions PðTÞ and PrðRÞ and decide which of the two,
restart or completion, happened first. If T < R, then the
process is completed prior to restart. To determine whether
the process ends in success or failure, we toss a coin with
the probability of success PsðTÞ/PðTÞ and assign the
outcome to the variable x. Otherwise, if T ≥ R, the process
begins completely anew, and we should repeat the pro-
cedure until the process reaches completion.
After averaging the statistics of the underlying process

and random restart events, Eq. (2) yields

pr ¼ hxi ¼ hIðT < RÞyTi
hIðT < RÞi : ð3Þ

Once the probability density functions PsðTÞ and PrðRÞ
are known, one can readily compute hIðT <RÞyTi¼R
∞
0

R
R
0 PrðRÞPsðTÞdRdT and hIðT < RÞi ¼ R

∞
0

R
R
0 PrðRÞ

PðTÞdRdT. When restart events come from Poisson
statistics with a constant rate parameter r, the restart time
R has an exponential distribution PrðRÞ ¼ re−rR and
Eq. (3) reduces to

pr ¼
P̃sðrÞ
P̃ðrÞ ; ð4Þ

where P̃sðrÞ and P̃ðrÞ denote the Laplace transforms of,
respectively, PsðTÞ and PðTÞ evaluated at r. Note that for
the above problem of diffusion mediated search PsðTÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20/4πDT3

p
e−αT−x

2
0
/4DT and PfðTÞ¼αe−αTerfð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20/4DT

p
Þ

[37]. It is straight forward to show then that Eq. (4)
reproduces Eq. (1) previously obtained through the less
generic method (see SM [53]).
Noteworthy, at r → 0, Eq. (4) yields pr ≈ pþ

pðhTi − hTsiÞr, where hTi ¼ R
∞
0 PðTÞTdT and hTsi ¼

p−1
R
∞
0 PsðTÞTdT represent, correspondingly, the uncon-

ditional MFPT of the original process and its MFPT
conditional to success (assuming that these expectations
as well as the high-order moments exist). Thus, the
inequality hTsi < hTi gives a simple criteria of whether
the introduction of a Poisson restart with an infinitesimally

small rate will increase the success probability. In particu-
lar, for the mortal Brownian searcher we have hTi ¼
ð1 − e−

ffiffiffiffiffiffiffiffiffi
x2
0
α/D

p
Þ/α and hTsi ¼ x0/ð2

ffiffiffiffiffiffiffi
αD

p Þ so that this cri-
teria is satisfied only when α < α0 in accord with the above
analysis. Let us also stress that in some cases, applying
restart at a high enough rate may be beneficial even when
restart with a small rate decreases the chances of success.
Indeed, one finds from Eq. (4) that at r → ∞ the success
probability becomes pr ¼ limT→0PsðTÞ/PðTÞ, and thus, it
can take any value in the interval from zero to unity
depending on the behavior of PsðTÞ and PðTÞ at T → 0.
We are mostly interested in the class of problems where

the probability pr is maximized for some optimal rate r�.
What do these problems all have in common? To address
this question, let us take a look at the first-passage-time
properties of the process illustrated in Fig. 2(a). As was
shown in [17], the completion time Tr of a generic first-
passage process under a generic restart mechanism obeys
the following identity

Tr ¼ IðT ≥ RÞðRþ T 0
rÞ þ IðT < RÞT; ð5Þ

in which T 0
r is an independent and identically distributed

copy of Tr. Equation (5) allows one to express the MFPT
as hTri ¼ hminðT; RÞi/hIðT < RÞi, where minðT; RÞ is the
minimum of T and R. Next, one could ask also how to
compute the MFPT hTs

ri conditional to success, which is
simply the average completion time of successful trials. By
virtue of its definition, this quantity can be written as
hTs

ri ¼ hxTri/hxi. Substituting Eqs. (2) and (5) into this
relation results in

hTs
ri ¼

hIðT > RÞRi
hIðT < RÞi þ hIðT < RÞyTTi

hIðT < RÞyTi
: ð6Þ

For an exponentially distributed restart, Eq. (6) takes a
particularly simple form (see SM [53])

hTs
ri ¼ hTri −

d lnpr

dr
; ð7Þ

where pr is given by Eq. (4) and hTri¼ r−1ð1− P̃ðrÞÞ/P̃ðrÞ
[16]. Equation (7) tells us that the response of the success
probability to the change of the restart rate is determined by
the difference between the unconditional and the conditional
MFPTs; thus, generalizing the result of the asymptotic
analysis. To demonstrate the general validity of Eq. (7),
we numerically checked it in four different settings, see
Fig. 3. Importantly, if the success probability pr of the
restarted process attains a maximum for some r�, the second
term in the right hand side of Eq. (7) vanishes and we get

hTs
r� i ¼ hTr� i: ð8Þ

Also, since prhTs
ri þ ð1 − prÞhTf

r i ¼ hTri, a similar iden-
tity holds true for the mean completion time of failed trials:
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hTf
r� i ¼ hTr�i. We thus conclude that when the rate of a

Poisson restart is optimal, in the sense that it maximizes
or minimizes the probability to observe specific outcome,
the unconditionalMFPT is equal to the conditionalMFPT in
this outcome. This universal feature is shared by all
optimally restarted processes irrespective on their fine
details [see Figs. 3(a) and 3(b)].
The surprising simplicity of Eq. (8) calls for its intuitive

explanation. To provide such an explanation, let us assume
that one starts to observe a first-passage process, which is
allowed to repeat itself over and over, at a randommoment of
time. What is then the expected probability pexp of getting
success in the next outcome? It can be shown that this
probability is given by pexp ¼ phTsi/hTi (see SM [53]).
Obviously, applying a Poisson restart with an infinitesimally
small rate δr will increase the chances of success whenever
pexp < p, while at pexp > p the effect will be opposite. At
the same time, if the process is already restarted at the
optimal rate r�, then ½dpr/dr�r� ¼ 0 and a small additional
correction δr to r� does not change the probability of success
pr� in the leading order approximation. Therefore, for the
optimally restarted process, pr� must be equal to pexp

r� ¼
pr� hTs

r� i/hTr� i that immediately leads to Eq. (8).

Interestingly, the match of unconditional and conditional
MFPTs is an inherent property of some two-thresholds first-
passage processes relevant to kinetics of enzyme reactions
[55,56], motor proteins dynamics [57], entropy-production
fluctuations [58], and decision making [59]. For all these
processes the splitting probabilities coincide with the cor-
responding expected splitting probabilities.
Anticipating that optimization is not an exclusive pre-

rogative of a Poisson restart, it is natural to ask how to
choose a restart time distribution PrðRÞ that provides the
maximum probability of success pr for a given first-
passage process. Recently, it was proven that a determin-
istic restart [i.e., PrðRÞ ¼ δðR − tÞ] always outperforms
stochastic restart strategies in terms of attaining the lowest
MFPT [17]. Arguments similar to those used in [17] allow
us to conclude that a deterministic restart is also universally
preferable when one needs to optimize the splitting
probabilities. It can be shown that if there exists such t�
that a deterministic restart with a restart time distribution
PrðRÞ ¼ δðR − t�Þ brings the probability of success to a
maximum pt� , then the value pt� cannot be exceeded by
stochastic restart strategies (see SM [53]).
Equation (8) is no longer valid when restart events have

non-Poisson statistics. Instead, the conditional and uncon-
ditional mean first-passage times of a process undergoing
optimally tuned deterministic restart obey the universal
inequality constraint

hTs
t� i ≥ hTt� i: ð9Þ

ToproveEq. (9), let us assume that theprocess,which is being
restarted deterministically in anoptimalway, becomes subject
to an additional Poisson restart with an infinitesimally small
rate δr. That produces a deferential correction δp to the
probability of success pt� attained by deterministic restart.
Equation (7) allows us to write hTt�i − hTs

t�i ¼ δp/ðpt�δrÞ.
Because of the dominance of a deterministic restart over other
restart strategies, one can be sure that δp ≤ 0, and therefore,
hTs

t� i ≥ hTt�i. Note also that theMFPTof failed trials satisfies
the opposite inequality: hTf

t� i ≤ hTt� i.
Conclusion.—When the different outcomes of a first-

passage process are not equally valuable, the splitting
probabilities may come to the fore as a crucial measure
of efficiency and reliability [36–41,59] In this Letter, we
applied a general theoretical approach to describe the effect
of restart on the splitting probabilities of a process with
exactly two possible completion scenarios. It was shown
that a carefully chosen rate of Poisson restart could
maximize (minimize) the probability that the process will
complete in the desirable (undesirable) way. Whenever
it is the case, the conditional and unconditional mean
completion times are equal to each other. We also estab-
lished the global dominance of a deterministic restart in
the entire space of restart strategies—further evidence of
the great optimization potential of deterministic restart in

(a) (b)

(c) (d)

FIG. 3. The probability of success pr (gray circles) and the
MFPTs, hTri (blue circles) and hTs

ri (green circles), versus the
rate r of a Poisson restart obtained from the numerical simu-
lations of a Bernoulli experiment in various settings: mortal
Brownian searcher (a), mortal run-and-tumbling searcher (b),
Brownian searcher and two competing targets (c), and two
Brownian searchers competing for a target (d). As we see, the
relation ðd lnpr/drÞ ¼ hTri − hTs

ri [a simple rearrangement of
Eq. (7)] is generally valid. The details of simulations can be
found in [53].
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first-passage problems [12,17]. Note that these conclusions
are robust to appearance of a generally distributed random
time penalty for restart (see SM [53]). Thus, our work adds
to the collection of universal results in the field of first-
passage phenomena [16,17,60–63].
Of many implications of the above results, let us empha-

size the issue relevant to chemical kinetics. The two
fundamental problems of chemistry are control over the
reaction rate [64] and the product selectivity [39–41]. As we
know, thanks to the recent study of enzymatic reactions [1],
the restart of a catalytic step can potentially accelerate the
rate of product formation. The results of the present work
lead to the complementary conclusion that when competing
pathways of a chemical reaction end up with different
products, the introduction of a restart mechanism may allow
us to have control over the product ratio.
A particularly interesting line of future research concerns

the so-called deadline meeting problem. As was noticed in
computer science, a restart could help to increase the chances
that a randomized search algorithm will find the solution
before a prescribed deadline passes [65–67]. One could try to
extend the analysis presented here to address the issue of
universality of the optimal restart in this setting [68].
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