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We introduce a general model for a network of quantum sensors, and we use this model to consider the
following question: When can entanglement between the sensors, and/or global measurements, enhance the
precision with which the network can measure a set of unknown parameters? We rigorously answer this
question by presenting precise theorems proving that for a broad class of problems there is, at most, a very
limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation
problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on
the estimation uncertainty. This immediately implies that there are broad conditions underwhich simultaneous
estimation ofmultiple parameters cannot outperform individual, independent estimations.Our results apply to
any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as
when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out
the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can
enhance the estimation precision when the parameters of interest are global properties of the entire network.
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Quantum networks are central to a growing number of
quantum information technologies, including quantum
computation [1,2] and cryptography [3,4]. Many important
metrology problems can be framed in terms of networks,
including mapping magnetic fields [5–9], phase imaging
[10–16] and global frequency standards [17]. However,
there is no general consensus on whether entanglement
within a network of sensors can enhance the precision to
which the network can measure a set of unknown param-
eters: entanglement provides significant enhancements in
some cases [17,18] but not others [14,19]. Given the
immense challenges faced in the creation and manipulation
of entangled states, developing a complete understanding
of when such resources are advantageous for multipara-
meter estimation is of paramount importance.
In this Letter we introduce and analyze a general model

that encompasses a wide range of those quantum multi-
parameter estimation (MPE) problems that might naturally
be termed a “quantum sensing network” (QSN). Our QSN
model (Fig. 1) includes any situation in which spatially or
temporally localized sensors are encoded with independent
parameters. Hence, our results have direct implications for
multimode linear [10–16] or nonlinear [11] optical phase
shift estimation for quantum imaging, mapping unknown
spatially or temporally changing fields [5–9], estimating
many-qubit Hamiltonians [18], and networks comprised of
clocks [17], BECs [20], interferometers [14], or hybrid
elements [21]. Beyond these examples, any situation in
which independent parameters are unitarily imprinted on
different quantum subsystems fits into our model.

Using our model we show that, if the generators of all of
the unknown parameters commute, no fundamental preci-
sion enhancement can be achieved by entangling the sensors
or by performing global measurements. In this case, states
that are separable between the sensors—which are often
easier to prepare experimentally—can achieve the ultimate
quantum limit. We then look at the case of noncommuting
parameter generators; here we demonstrate that entangle-
ment between sensors can at most enhance the estimation
precision by a factor of 2. We conclude by showing that
entangling the sensors can significantly enhance the pre-
cision when estimating global parameters, such as the
average of all the unknown parameters in the network [17].
Whenever a protocol employs entangled resources it is

fundamentally indivisible into separate, independent esti-
mations at each location: it is intrinsically a simultaneous
[9–16,22] estimation method. As such, our results directly
imply that there are broad conditions under which simu-

FIG. 1. A network of quantum sensors. The kth node represents
a sensor into which the vector parameter ϕ½k� is encoded via a
local unitary evolution. The connections between the nodes
denote that, in general, the sensors can be entangled, and/or
global measurements can be performed.
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ltaneous estimation cannot outperform a strategy that
estimates each parameter individually, conclusively
proving that enhancements from simultaneous estimation
[9–13,16,22] are not generic.
Multiparameter estimation (MPE).—Consider a quantum

system with Hilbert space H, and let DðHÞ and ℳðHÞ
denote the space of density operators and positive-operator
valued measures (POVMs) on H, respectively. We will use
the standard framework for a quantum metrology protocol
[23–25]: An experimenter picks some ρ ∈ DðHÞ andM ∈
ℳðHÞ and implements μ repeats of (i) prepare ρ, (ii) let ρ
evolve toρϕ ¼ UϕρU

†
ϕwhereUϕ is a unitary that depends on

d unknown parametersϕ ¼ ðϕ1;ϕ2;…;ϕdÞT , and (iii) apply
themeasurementM toρϕ. An estimate ofϕ is then calculated
from experimental outcomes using an estimator Φ.
A common measure of the estimation uncertainty is the

covariance matrix CovðΦÞ ¼ E½ðΦ − E½Φ�ÞðΦ − E½Φ�ÞT �,
where E½·� is the expected value. For any unbiased
estimator, the quantum Cramér-Rao bound (QCRB) states
that CovðΦÞ ≥ ðFμÞ−1 [26–30], where F is the quantum
Fisher information matrix (QFIM) for ρϕ, defined by F kl≔
Tr½ρϕL̂kL̂lþρϕL̂lL̂k�=2, with L̂k solving ∂ρϕ=∂ϕk ¼
ðρϕL̂k þ L̂kρϕÞ=2 [26–30]. Note that for matrices A and
B, A ≥ B denotes that A − B is positive semidefinite. For
d ¼ 1 and any ρϕ there is always a measurement and an
estimator that saturate the QCRB as μ → ∞ [29,31,32], but
for d > 1 this is not generally true [26,28,33–37]. Some
elements of ϕ may be of more interest than others, so we
introduce a d×d diagonalweighting matrix,W, withW≥0,
and define the scalar quantity EΦ ≔ Tr½WCovðΦÞ�
[26,38,39]. Throughout this Letter, EΦ is the figure
of merit to minimize. The QCRB implies that EΦ ≥
ð1=μÞPkWkk½F−1�kk.
Quantum sensing networks.—In this Letter we consider a

particular class of quantum MPE problems: quantum sens-
ing networks (QSNs). A QSN is, by definition, any estima-
tion problem in which we have s quantum systems, which
we will call “quantum sensors,” and there are d unknown
parameters with each parameter unitarily encoded into one
and only one of the sensors. It is natural to refer to this model
as a QSN because any set of spatially distributed quantum
systems that are each “sensing” some locally unitarily
encoded parameters is a QSN (although some systems
without this spatial structure also fit into this framework).
Our model, illustrated in Fig. 1, encompasses many

metrology problems in the literature [5–18,20,21] (see
examples later). More formally, a QSN is any MPE
problem in which the total Hilbert space H may be
decomposed as H ¼ H1 ⊗ … ⊗ Hs for some fHkg,
and the unitary evolution may be decomposed as Uϕ ¼
U1ðϕ½1�Þ ⊗ U2ðϕ½2�Þ ⊗ … ⊗ Usðϕ½s�Þ, where ϕ½k� denotes
the dk-dimensional subvector of ϕ encoded onto the kth
sensor by the unitary Uk, with

P
kdk ¼ d. Let ϕ½1� ¼

ðϕ1;…;ϕd1ÞT , ϕ½2� ¼ ðϕd1þ1;…;ϕd1þd2ÞT , etc.

Often we wish to compare probe states ρ that contain the
same quantity of “resources” RðρÞ, for some R∶DðHÞ →
R≥0. There is no universally applicable definition for the
resources within a state; we will consider functions of the
form RðρÞ ¼ Tr½ðR̂1 þ R̂2 þ � � � þ R̂sÞðρÞ�, where R̂k is
any Hermitian operator acting nontrivially only on sensor
k and satisfying RðρϕÞ ¼ RðρÞ (so resources are conserved
under the evolution). This includes the resource counting
in most standard metrology problems. For example, in
optical metrology with s modes the total average number
of photons is the standard resource [10–15], given by
R̂k ¼ n̂k, where n̂k is the number operator on mode k
(which commutes with the standard parameter generator,
n̂k). In atomic sensing, the resource is normally the total
number of atoms [40–43]. This is obtained by taking the
Hilbert space of each sensor to be the direct sum of the n
atoms Hilbert space for n ¼ 0; 1; 2;…, and R̂k to be the
atom-counting operator, which commutes with all atom-
number conserving Hamiltonians.
QSNs with commuting parameter generators.—The

generator of ϕk is defined by Ĥk ≔ −ið∂U†
ϕ=∂ϕk

ÞUϕ
[44,45]. Our main results are separated into two cases:
when the generators all commute, and when they do not.
First, consider any QSN in which the generators all com-
mute. Informally, our first result is that for any such
estimation problem sensor-separable states can enable an
estimation uncertainty that is at least as small as can be
achievedwith sensor-entangled states. This also implies that,
in this setting, simultaneous estimation provides no intrinsic
advantage over individual estimation; the latter can achieve
the ultimate quantum limit. We now state this precisely:
Theorem 1.—Consider any QSN in which ½Ĥk; Ĥl� ¼ 0

for all k, l and where we wish to minimize EΦ where
EΦ ¼ TrðWCovðΦÞÞ for some specified W. For any esti-
mator, probe ρ and measurement Mρ, there exists an
estimator, a probe φ and a measurement Mφ for which
1. φ is separable between sensors. 2.RðφÞ ≤ RðρÞ. 3.Mφ is
implementable by independent measurements of each sen-
sor. 4. EΦðφ;MφÞ ≤ EΦðρ;MρÞ in the asymptotic μ limit.
Proof.—This may be proven by constructing such a φ

and Mφ, for arbitrary ρ and Mρ. First consider pure ρ,
i.e., ρ ¼ ψ ¼ jψihψ j. We now find a mapping from ψ to a
state φ that satisfies conditions 1 and 2, and that has an
equal or smaller QCRB on EΦ. Consider the state
jφi ¼ ⨂s

k¼1ð
P

λk
∥hψ jλki∥jλkiÞ, where fjλkig is a set of

orthonormal mutual eigenstates of the generators for all of
the parameters encoded into sensor k. By construction, ψ
and φ have the same statistics for any operator that is
diagonal in the eigenbasis of the generators, and φ is
separable between sensors. As the resource operator
commutes with Uϕ, it commutes with the parameter
generators, implying φ satisfies conditions 1 and 2.
For a pure state and commuting generators F kl ¼

4ðhĤkĤli − hĤkihĤliÞ [9,12,14]. Using this we find that
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ψ and φ have the same block-diagonal QFIM elements,
where the block diagonals are the sub-QFIMs for each ϕ½k�,
denoted F ½kk�, and φ has a block-diagonal QFIM (ψ in
general does not). Now for any QFIM ½F−1�½kk� ≥ ½F ½kk��−1,
with saturation only for a block-diagonal QFIM (see the
Supplemental Material [46]), and, hence, the diagonal
elements of the inverse QFIM of φ are all smaller than
or equal to those of ψ . Using EΦ ≥ ð1=μÞPlWll½F−1�ll,
and noting that when the generators commute there always
exists a measurement and estimator that asymptotically
saturate the QCRB [27], we see that condition 4 is satisfied
by some measurement and estimator. It only remains to
show that for one such measurement condition 3 holds, and
for every mixed state ρ, there exists a pure state with equal
or lower EΦ and the same resources. We prove this in the
Supplemental Material [46].
Theorem 1 has practical implications for a range of

important estimation problems. For example, consider
estimating a set of d optical phases encoded into d modes
(defined with respect to a classical phase Ref. [54]).
Theorem 1 implies that, for any mode-entangled state and
measurement, there is a mode-separable state and measure-
ment (acting on only that mode and a local phase reference)
that provides an equal or lower estimation uncertainty, for
the same average number of photons through the d phase
shifts. So, although highly mode-entangled states can
provide high estimation precision [10–12,16], this entan-
glement is not necessary. This supersedes the results of
Ref. [14], which apply only to mode-symmetric states.
Importantly, Theorem 1 is only directly applicable when

the set of states, from which we wish to find the best ρ, is
the set of all density operators on H ¼ H1 ⊗ … ⊗ Hs.
Hence, if we restrict the allowed ρ to S ⊂ DðHÞ, Theorem
1 is only applicable if S contains all ρ on some smaller
Hilbert spaceH0 that still factorizes. This is not the case for
some global constraints on the state. This reconciles our
theorem with Humphreys et al. [10], who show that highly
entangled “generalized NOON states” provide a precision
enhancement over individual estimation strategies, for the
d-optical-phases problem, when only states with definite
total photon number are considered.
Interestingly, Theorem 1 may be extended to further

classes of S. This includes any S containing pure states
whereby every state in S can be mapped to a sensor-
separable state in S with the same measurement statistics
for operators diagonal in the eigenbasis of the generators
(the proof is a trivial adaption of that given above). This
implies that, if considering only Gaussian optical states in
the d-phases problem, entanglement cannot reduce the
estimation uncertainty. As such, our theorem strengthens
and complements the results of Ref. [15].
Theorem 1 may also be applied to other important

metrology scenarios: It implies that the estimation of
nonlinear optical phase shifts on many modes [11] does
not benefit from mode entanglement, and in a network of

clocks [17], if each clock is used for local timekeeping then
entangling the clocks will not enhance the precision.
A magnetic field sensing problem is considered later.
QSNs with noncommuting parameter generators.—There

are a variety of important estimation problems for which
the generators do not commute [9,55,56], such as estimating
the three spatial components of a magnetic field [9], or
estimating completely unknown unitaries [56]. We now adapt
Theorem1 to the case of noncommutingparametergenerators.
Consider an arbitrary QSN with some noncommuting

parameter generators. In our model, the generators of
parameters imprinted on different sensors always commute,
so only the generators of parameters encoded into the same
sensor can be noncommuting. When estimating parameters
with noncommuting generators, it is known that the optimal
estimation protocol will generally require a probe that is
entangled with an ancilla [55,56]. In a QSN, other sensors in
the network can potentially play a similar role to ancillas, and
so sensor entanglementmight reduce estimation uncertainty.
However, any enhancement in the estimation precision
gained from entanglement between sensors can instead be
obtained by entangling each sensor with a local ancilla. The
cost of this is that resources can be consumedby the ancillary
system; twice the resources might be required to obtain the
same estimation precision without sensor entanglement. We
can state this precisely in the following theorem:
Theorem 2.—Consider any QSN in which we wish to

minimize EΦ. For any estimator, probe state ρ ∈ DðHÞ and
measurement Mρ ∈ ℳðHÞ, there exists an estimator,
probe φ∈DðH⊗HÞ and measurement Mφ∈ℳðH⊗HÞ
for which 1. φ is separable between sensors, but each
sensors can be entangled with a local ancilla. 2. RðφÞ ≤
2RðρÞ. 3. Mφ is implementable by independent measure-
ments of each sensor. 4. EΦðφ;MφÞ ≤ EΦðρ;MρÞ in the
asymptotic μ limit.
A complete proof is provided in the SupplementalMaterial

[46] (it closely follows the proof of Theorem 1). Note that
condition 2 in this theorem depends on how resources used in
ancillary sensors are counted, and here we have counted
resources in the ancillas and sensors equally. If ancillas are
considered cost-free then condition 2 improves to
RðφÞ ≤ RðρÞ. Whether entanglement with a local ancilla
is practically plausible is application dependent. Theorem 2
can be applied to a range of practical QSN problems. For
example, if we wish to characterize a multidimensional
field atmultiple locations, then entanglement between atomic
sensors at these locations can provide no improvement in
precision compared to entangling these atoms with some
local ancillary system (which may contribute to total resour-
ces used). This complements the results of Ref. [9], which
provides strategies for single-site estimation of multidimen-
sional fields.
Estimating global functions of ϕ.—In some sensing

problems it may not be necessary to estimate ϕ. Instead,
the parameter(s) of interest could be some function(s) of ϕ,
e.g.,

P
kϕk. In this case, the aim is to optimize the QSN for
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estimating these functions, and this encompasses many
important problems, including measuring phase differences
in one [57] or more [14] interferometers, the average or sum
of many parameters [17], and a linear gradient [58,59].
A global property of the network is some vector (or scalar)
with elements that are functions of fϕkg depending non-
trivially on many or all of the ϕk, which includes the
examples given above. We now show that the optimal
protocol for estimating global properties of a QSN often
requires sensor-entangled states.
For simplicity, we consider estimating a single linear

function of ϕ; θ ¼ vTϕ for some v ∈ Rd. To fix arbitrary
constants, let ∥v∥2¼1 and vk≥0∀k (∥v∥p≔ ½Pkjvkjp�1=p).
Moreover, consider a QSN consisting of ≤ N particles (e.g.,
atoms or photons) distributed over d sensors, withϕk encoded
into sensor k. We take the parameter generators to all be
identical (except that they act on different sensors), with the
maximal and minimal eigenvalues of the generator for ≤n
particles in a sensor, λmax;n and λmin;n, satisfying λmax;n −
λmin;n ¼ κn for some constant κ > 0. Denote corresponding
orthonormal eigenvectors by jλmax;ni and jλmin;ni. Examples
that fit into this setting include estimating a function of many
linear optical phase shifts, or of a spatially varying one-
dimensional magnetic field with multilevel atoms, or
qubits [18].
Although we only wish to estimate θ, there are many

unknown parameters. Hence, to bound VarðΘÞ ¼ E½Θ2� −
E½Θ�2 (Θ is the estimate of θ) requires the QCRB on θ ¼
ðθ; θ2;…ÞT ¼ Mϕ for some matrix M with ðMϕÞ1 ¼ θ.
We may takeM to be orthogonal, as only the first row ofM
is specified by the problem. The relevant QFIM is then
F ðθÞ ¼ MF ðϕÞMT [29].
The optimal n-particle state of sensor k for estimating ϕk

is ∝jλmin;ni þ jλmax;ni, so the optimal N-particle QSN
sensor-separable state for estimating θ is ∝ðjλmin;wk

iþ
jλmax;wk

iÞ⊗d optimized over w ∈ Nd with ∥w∥1 ¼ N. By
calculating the QFIM of this w-optimized state, for any
pure and sensor-separable state we have VarðΘÞ ≥ ∥v∥22=3=
ðμκ2N2Þ ≥ ∥v∥31=ðμκ2N2Þ, where μ is the number of
experimental repeats. Now, assuming that vk=∥v∥1 is
rational and that N is such that ~vk ≡ Nvk=∥v∥1 is an
integer ∀k, consider the sensor-entangled GHZ-like state

jψGHZ;vi ¼
1
ffiffiffi
2

p ðjλmax;~vki⊗d þ jλmin; ~vki⊗dÞ: ð1Þ
The QFIM for this state is F ðϕÞ ¼ κ2N2vvT=∥v∥21, and
hence F ðθÞ11 ¼ κ2N2=∥v∥21 with all other matrix elements
zero. This QFIM is singular, but the state depends on θ, so
the saturable QCRB for this state is given by VarðΘÞ ≥
1=ðμF ðθÞ11Þ ¼ ∥v∥21=ðμκ2N2Þ.
As ∥v∥2 ¼ 1, for all nontrivial v (i.e., v with multiple

nonzero elements) ∥v∥1 > 1. Hence, for all such v entan-
glement between sensors reduces the estimation uncer-
tainty below what is obtainable with any sensor-separable
state. Moreover, ∥v∥1 is maximal when v ∝ ð1; 1;…; 1Þ,

and so the precision enhancement is largest when estimat-
ing the average or sum of all d parameters. In this setting,
the reduction in the estimation variance is a factor of 1=d
(as then ∥v∥21=∥v∥22=3 ¼ 1=d).
To illustrate these results, we now apply them to a

simple—but practically relevant—example: estimating
the difference between the magnetic field strength at two
locations with N qubits (i.e., gradient estimation). Consider
estimating θ ¼ ðϕ2 − ϕ1Þ=

ffiffiffi
2

p
with ϕk for k ¼ 1, 2 gen-

erated by Ĵz;k ¼ 1
2

P
jσz;k;j on sensor k, which consists of nk

qubits for n1 þ n2 ¼ N, where σz;k;j is the σz operator on
qubit j in sensor k. Our results imply that a global GHZ-like
state ∝j↓in1 j↑in2 þ j↑in1 j↓in2 with n1 ¼ n2 ¼ N=2 has an
uncertainty reduction of 1=2 compared to any sensor-
separable state. However, if we instead wish to estimate
ϕ1 and ϕ2 (or ϕ2 − ϕ1 and ϕ2 þ ϕ1), then the above state is
not appropriate, as it is sensitive only to ϕ2 − ϕ1. In this
case, Theorem 1 implies that the optimal probe state is
separable between the atoms at the two sites (the optimal
state is then a local GHZ-like state at each site).
Importantly, note that these conclusions do not necessarily
hold if ϕ1 and ϕ2 have a known dependence: the extreme
case is when we know that ϕ1 ¼ ϕ2, in which case
estimating ϕ≡ ϕ1 ¼ ϕ2 is a well-known one-parameter
problem, and a global GHZ is optimal [41,60]. This
example can be directly adapted to l-level atoms, >2
sensors, and more general linear functions.
Recently, Ge et al. [61] have applied our results to the

estimation of a function of d linear phase shifts, and they
have shown how to obtain the OðdÞ precision enhance-
ment, derived above, by entangling photons using a linear
optical network. These interesting results show that the
OðdÞ enhancement proven here is potentially obtainable
with current technology.
Conclusions.—Quantum metrology is a powerful emerg-

ing technology, but while many practical problems unavoid-
ably involve more than one unknown parameter, the critical
resources for obtaining the ultimate quantum limit in
multiparameter estimation (MPE) are not yet well under-
stood. In this setting, simultaneous estimation, entanglement
between sensors, and global measurements are possible
avenues for improving estimation precision that are not
relevant in the single-parameter scenario [9–13,16,22].
In this Letter we considered a broad class of practically

important MPE problems: quantum sensing networks,
meaning any setting in which the unknowns parameters
can be subdivided into distinct sets each associated with
one spatially or temporally localized sensor. We have
presented a general model for such estimation problems,
and we stated precise theorems that show that simultaneous
estimation, entanglement between sensors, and global
measurements are broadly not fundamentally useful resour-
ces for minimizing estimation uncertainty in this setting.
The important exception to this is when one or more global
properties of the network are the parameters of interest,
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e.g., if only the average of all the parameters is to be
estimated. In this case we have shown that entangled states
and measurements can, in general, improve estimation
precision. In doing so, we have shown that GHZ-like
states have a particularly high precision for estimating
generic linear functions in a practically relevant class of
QSNs, including in optical and atomic sensing networks.
These results provide a rigorous foundation for under-

standing the role of entanglement and simultaneous esti-
mation in optimal MPE, and they definitively show that
these resources are not critical in a broad class of important
problems. We anticipate that this Letter will prove helpful
for guiding the development of sensing technologies for
multiparameter metrology in fields as diverse as optical
imaging [10–16], field mapping with atoms [5–9], and
sensor networks comprised of BECs [20], clocks [17], or
interferometers [14]. Moreover, recently these results have
been applied to the interesting problem of estimating
functions of linear optical phases [61].
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