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We investigate an operational description of identical noninteracting particles inmultiports. In particular, we
look for physically motivated restrictions that explain their bunching probabilities. We focus on a symmetric
3-port in which a triple of superquantum particles admitted by our generalized probabilistic framework would
bunch with a probability of 3

4
. The bosonic bound of 2

3
can then be restored by imposing the additional

requirement of product evolution of certain input states. These states are characterized by the fact that, much
like product states, their entropy equals the sum of entropies of their one-particle substates. This principle is,
however, not enough to exclude the possibility of superquantum particles in higher-order multiports.
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Introduction.—Although quantum mechanics is a well
established theory, its foundations still lack a satisfactory
explanation. This is in stark contrast to special relativity,
where all the predictions can be traced back to the
invariance of the physical laws in inertial systems and
the constant speed of light for all observers. To deepen our
understanding of the quantum theory, we need to discover
the underlying principles.
This quest has been undertaken in twoways. The first, the

device-independent approach, consists of restricting the
conditional probability distributions of some black boxes
with information-theoretic principles. For example, in their
seminal paper [1] Popescu andRohrlich proposed a principle
which guarantees that a box cannot be used for superluminal
communication. This restriction, called no-signaling, was,
however, not enough to exclude all stronger-than-quantum
correlations. Soon, more fundamental principles were dis-
covered, including macroscopic locality [2], local orthogon-
ality [3], and many others [4–6], but none of them was fully
successful in restoring the quantum theory.
The other approach, known under the umbrella term

generalized probabilistic theory (GPT), aims to single out
the quantum formalism from information-theoretic princi-
ples. It defines the notions of systems, states, transforma-
tions, and measurements and then narrows them down with
additional axioms until Hilbert spaces, density matrices,
and the Born rule appear. Some notable works written in
this spirit include Refs. [7–11].
In this Letter, we employ elements of the GPT formalism

to provide an operational description of linear optical
interferometric experiments with bosons and fermions.
Our framework consists of input and output probability
distributions of states linked with a transformation matrix.
This matrix captures two important features of optical

multiports. First, the particles do not interact; therefore,
each particle evolves individually and the differences in
measured probability distributions stem solely from the
particle statistics and interference [12–19]. To reflect this,
we impose a consistency condition which constrains trans-
formations of probability distributions. This condition is
analogous to no-signaling and states that the distribution of
an individual particle, or a subset of particles, cannot
depend on the total number of particles. Second, the
entropy of the probability distribution does not decrease,
which is implemented by requiring that the transformation
matrix be doubly stochastic [20].
These restrictions are obeyed by quantum particles; how-

ever,we show that they allow for the existence of hypothetical
particles whose grouping tendencies, commonly known as
bunching, are stronger than in the case of bosons. This
example can be considered as an analog of a Popescu-
Rohrlich (PR) box within the realm of identical particles.
Finally,we provide an additional principlewhich rules out the
superbunching particles on a tritter (symmetric 3-port). It
consists of requiring that states whose entropy equals the
sum of the entropies of their substates undergo a product
evolution. Such states resemble product states, which are
significant components of many GPTs (see, for instance,
Refs. [9–11]). Interestingly, this principle is not enough to
exclude superquantum particles in higher-order multiports.
Themotivation for our research is twofold. First,wewould

like to contribute to the search for general rules underlying
the foundations of quantum theory [1–11]. In particular, our
goal is to describe the fundamental properties of systems
consisting of more than two identical particles. Second,
indistinguishability was recognized as a resource for quan-
tum computation [21]; therefore, its deeper understanding
can result in future practical applications.
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General framework.—Every experiment has three stages.
The first stage is a preparation of a system in some initial
state. Due to various reasons, the state need not be exactly
determined. Therefore, the most general state description is
given by a set of probability distributions over the values of
measurable properties. In the next stage, the system under-
goes an evolution, and its state changes. The description of
this change is given by a set of allowable transformations on
the set of probability distributions. Finally, in the last stage,
some properties of the system are measured.
In this Letter, we consider a system of N noninteracting

identical particles which can be distributed over K different
modes. The state is determined by a set of particle
occupation numbers for each mode, s ¼ fn1; n2;…; nKg.
The number of particles is conserved; thereforeP

K
i¼1 ni ¼ N. The total number of different states is

d ¼ ðK þ N − 1Þ!/½N!ðK − 1Þ!�. Since the description
need not be deterministic, we consider d-dimensional
probability vectors Π over all states. We will refer to these
vectors as distributions.
The model is simple—we prepare an initial probability

distribution Πi which is transformed into a final distribu-
tion Πf. The transformation is given by a stochastic matrix
S, i.e., Πf ¼ SΠi. The distribution Πf describes the
statistics of detection events which can be registered by
particle counters.
In order to illustrate the above idea, let us consider a

well-known example ofN ¼ 2 andK ¼ 2 corresponding to
noninteracting bosons on a symmetric beam splitter (BS).
There are three possible states, which we denote as f2; 0g,
f1; 1g, and f0; 2g. The probability vector is of the form

Π ¼ (pð2; 0Þ; pð1; 1Þ; pð0; 2Þ)T . The transformation reads

SBS ¼

0

B
@

1/4 1/2 1/4

1/2 0 1/2

1/4 1/2 1/4

1

C
A: ð1Þ

Before we proceed, we need to make one important
comment. One may question that the above approach does
not allow us to describe transformations on all physically
accessible initial states. For example, our generalized
probabilistic framework does not consider quantum super-
positions of the states f2; 0g, f1; 1g, and f0; 2g. The model
assumes that we only deal with mixtures over states with
well-defined occupation numbers. However, note that any
quantum superposition can be obtained from such states by
a proper transformation. This pretransformation can be
included in the main transformation. For example, before
the particles go into the BS, they can go through another
device which will prepare a superposition. In a similar way,
one may question that this approach does not allow us to
measure all states. However, just like with preparation, any
measurement basis can be transformed into the occupation
number basis, and this post-transformation can be also
included in the main transformation.

Consistency condition.—Let us focus on how to encode
the lack of interaction into our framework. We start with an
observation regarding a BS transformation made by two of
the authors previously in Ref. [22]. Namely, the trans-
formation of a single-particle distribution does not depend
on the presence of the other particle. Here, we generalize
this property to arbitrary transformations and arbitrary
subsets of particles.
In order to do that, we investigate the relationship

between theN- and (N − 1)-partite probability distributions
ΠðNÞ and ΠðN−1Þ. In essence, ΠðN−1Þ should be consistent
with a probability distribution obtained from ΠðNÞ by
randomly removing one particle. This can be described
as ΠðN−1Þ ¼ DðNÞΠðNÞ, where DðNÞ is a rectangular sto-
chastic matrix. Its entries Dij correspond to probabilities of
transition between an N-partite state sj and an (N − 1)-
partite state s0i. Such a transition is possible if and only if
deleting a single particle from some mode k of a state sj
gives a state s0i. Let nkði;jÞ be the occupation number of the
mode that we delete a particle from in sj to achieve the
transition. Then Dij ¼ nkði;jÞ/N if this state transition is
possible and 0 otherwise.
For example, in the case of N ¼ 2 and K ¼ 2, the

transition from a bipartite distribution to a single-partite
distribution (supported on states f1; 0g and f0; 1g) is given
by the 2 × 3 matrix

Dð2Þ ¼ 1

2

�
2 1 0

0 1 2

�

: ð2Þ

Finally, we can construct matrices allowing us to transform
N-partite into M-partite distributions via simple multipli-
cation DðN→MÞ ¼ DðMþ1Þ…DðN−1ÞDðNÞ.
Now we introduce constraints on transformations S. We

start with a transformation of a single particle Sð1Þ. This
transformation is the primitive of our model, since with no
interactions, single-particle transformation must be the
basis for the evolution of an arbitrary number of particles.
For example, in the case of a symmetric BS, this trans-
formation is given by

Sð1Þ
BS ¼ 1

2

�
1 1

1 1

�

: ð3Þ

The bipartite transformation Sð2Þ can be chosen in an
arbitrary way, provided that the following constraint is
fulfilled for all bipartite probability vectors Πi

ð2Þ:

Dð2ÞSð2ÞΠi
ð2Þ ¼ Sð1ÞDð2ÞΠi

ð2Þ: ð4Þ
In simple words, the above means that if we first transform
a bipartite distribution and then reduce it to a single-partite
distribution, we would get the same result as if we first
reduced a bipartite distribution to a single-partite distribu-
tion and then transformed it. This can be easily generalized
to an arbitrary number of particles
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DðN→1ÞSðNÞΠi
ðNÞ ¼ Sð1ÞDðN→1ÞΠi

ðNÞ: ð5Þ
Moreover, this constraint should hold at the level of all the
M-partite subsets

DðN→MÞSðNÞΠi
ðNÞ ¼ SðMÞDðN→MÞΠi

ðNÞ; ð6Þ
whereM is an arbitrary integerM < N. We will call Eq. (6)
the consistency condition.
To illustrate this restriction, let us once more consider the

example of a symmetric BS. Equations (2), (3), and (4)
imply Dð2ÞSð2ÞΠi

ð2Þ ¼ ð1/2; 1/2ÞT for any distribution
Πi

ð2Þ. This means that the final distribution must satisfy
�
pð2; 0Þ þ 1/2pð1; 1Þ
pð0; 2Þ þ 1/2pð1; 1Þ

�

¼
�
1/2

1/2

�

: ð7Þ

Note that the above is obeyed by bosons, fermions, and
distinguishable particles as well.
Double stochasticity.—Additionally, we would like the

entropy of the probability distribution not to decrease. This
property can be encoded in the transformation matrix S by
requiring it to be doubly stochastic; i.e., the sumof its entries
in each row and column equals 1 [20]. The extra condition
captures the fact that for quantummultiport experiments, the
entropy ofΠf ¼ SΠi is never smaller than the entropy ofΠi.
This is because the multiport transformation is unitary, and
the measurement of the particle number is modeled by a
decoherence in the particle-number basis. Neither of these
processes can decrease the entropy.
For instance, in the case of an asymmetric beam splitter

followed by the particle-number measurement, the trans-
formation matrix S is given by

Sð1Þ
aBS ¼

�
T R

R T

�

; ð8Þ

where T þ R ¼ 1.
Although every unitary quantum multiport transforma-

tion and the particle-number measurement can be repre-
sented by a doubly stochastic matrix, not all doubly
stochastic matrices correspond to a quantum process. In
this Letter, we consider a general class of doubly stochastic
transformations which obey the consistency condition
discussed above. In particular, we show that it is possible
to find such transformations that allow for stronger bunch-
ing than in the case of quantum bosons.
Beyond quantum theory.—Multipartite quantum states

are expressed in terms of operators a†i which create a
particle in mode i. For our purposes, we do not need to go
into detail about the underlying particle statistics to show
that the consistency condition is obeyed in quantum theory.
It is enough to observe that due to lack of interaction,
creation operators evolve independently a†i → a0†i .
Therefore, Eq. (6) is automatically satisfied. Moreover,
we have already argued that in the quantum case, the
entropy of the probability distributions does not decrease.

Interestingly, the two requirements still allow for a more
general description of transformations. Although the quan-
tum theory admits perfect bunching and antibunching in the
N ¼ 2 and K ¼ 2 scenario, for N > 2 or K > 2 one can
propose some more extreme behaviors. Here, we discuss
the case N ¼ 3 and K ¼ 3.
Let us first consider a quantum description of a sym-

metric 3-port, commonly known as a tritter. Its quantum
properties have been studied in great details—see, for
example, the work by Campos [15]. There are three input
modes described by creation operators a†i and three output
modes described by a0†i (i ¼ 1, 2, 3). The transformation is
given by a unitary mapping a0†i ¼

P
jUija

†
j , where

Uij ¼ ð1/ ffiffiffi
3

p Þωδij , δij is the Kronecker delta and ω is the
third root of unity.
The quantum tritter transformation applied to the three-

boson state f1; 1; 1g produces the states f3; 0; 0g, f0; 3; 0g,
and f0; 0; 3g with a probability of 2/9 each and the state
f1; 1; 1g with a probability of 1/3. Interestingly, unlike
N ¼ 2 and K ¼ 2, the quantum probability of bunching BQ

does not saturate the algebraic bound of 1:

BQ ¼ pð111Þ
300 þ pð111Þ

030 þ pð111Þ
003 ¼ 2

3
< 1; ð9Þ

where PðyÞ
x denotes the probability of transforming the state

y into state x. Although we do not provide a proof of this
statement, by the end of this work we will show that the
value of 2/3 is implied by a fundamental principle obeyed
by the quantum theory.
At this point, one may wonder if some hypothetical

particles, which obey the consistency and the double
stochasticity conditions, can have greater tripartite-bunching
properties than bosons. The answer is positive. Consider, for

example, the three-particle transformation Sð3Þ
T

ð10Þ
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where the blocks are schematically denoted by a single
element which is the same for all its entries. The above
transformation has a bunching probability BS ¼ 3

4
. One can

easily verify that Sð3Þ
T is doubly stochastic. It remains to be

shown that it also follows the consistency condition. In
order to do that, note that from the point of view of our
generalized probabilistic description, the single-partite
tritter transformation is given by

Sð1Þ
T ¼ 1

3

0

B
@

1 1 1

1 1 1

1 1 1

1

C
A: ð11Þ

Then, for all the possible initial states we indeed

have Dð3→1ÞSð3Þ
T Πi

ð3Þ ¼ Sð1Þ
T Dð3→1ÞΠi

ð3Þ.
Recovering the quantum bound on the bunching

probability.—The above example can be considered as
an identical-particle analog of the PR box [1]. Note that in
the case of the PR boxes, the no-signaling principle does
not recover quantum theory. In our case, the conditions
imposed by our framework do not recover quantum theory
either. However, here we find an additional physical
restriction that allows for the recovery of bosonic behaviour
on a tritter.
Let us first observe that the average two-particle bunch-

ing probability bounds the three-particle one from above.

B ≤
pð110Þ
200 þ pð101Þ

200 þ pð011Þ
200 þ � � � þ pð101Þ

002 þ pð011Þ
002

3
: ð12Þ

This follows from the consistency condition applied to the
general form of the transformation of state f1; 1; 1g. Since
the transformation matrix needs to be doubly stochastic, the
above expression can be written as

B ≤ 1 −
pð200Þ
200 þ pð020Þ

200 þ pð002Þ
200 þ � � � þ pð020Þ

002 þ pð002Þ
002

3
:

ð13Þ

The goal is therefore to show that the right-hand side of (13)
is bounded from above by 2

3
. To do that, we propose a

restriction on the possible transformations of states in
which all particles occupy the same mode.
Let us first motivate it by drawing a parallel with product

states. If a product state describes noninteracting subsys-
tems, each subsystem evolves independently. In this case,
the evolution of the whole is given by the product of
evolutions of the parts.
We focus on a two-partite case, which is the most

relevant to our considerations. If we denote the two
independent subsystems in a product state by A and B,
their entropies satisfy the relation

HðA;BÞ ¼ HðAÞ þHðBÞ: ð14Þ

A similar condition can be written for the probability
distributions of two particles:

HðΠð2ÞÞ ¼ 2HðΠð1ÞÞ ¼ 2HðDð2→1ÞΠð2ÞÞ: ð15Þ

The above states that the entropy of the whole probability
distribution is the same as the sum of entropies of its two
one-particle marginals. It is easy to verify that the only state
of two particles that satisfies Eq. (15) is of the form
f2; 0; 0g. As a side note, observe that in the first quantiza-
tion, these are the only states of identical particles that can
be written in a product form. Consequences of that fact
have been studied in Refs. [23,24].
Because of this analogy with the product states, and

because of the general assumption that particles do not
interact, we propose that states in which all particles are in
the same mode should evolve as a product of single-particle
evolutions. In the two-particle case, this principle means
that a system described by a probability distribution Πð2Þ
evolves as

Sð2ÞΠð2Þ ¼ Sð1ÞΠð1Þ × Sð1ÞΠð1Þ; ð16Þ

where states of the type a × b are treated as equivalent
to b × a because of the indistinguishability of particles.
For instance, we have f0; 1; 1g≡ f0; 1; 0g × f0; 0; 1g≡
f0; 0; 1g × f0; 1; 0g, so the two-particle vector space
shrinks to six dimensions. Formula (16) means that for a

tritter we have pð200Þ
200 ¼ pð200Þ

020 ¼ pð200Þ
002 ¼ 1

9
. Since the same

reasoning holds for the states f0; 2; 0g and f0; 0; 2g,
inequality (13) simplifies to B ≤ 2

3
, which is the quantum

bound for a three-partite bunching on a tritter.
Finally, we would like to note that our approach can be

applied to any system, not only the tritter. For instance, two
particles on an N-port have the average quantum bunching
probability B equal to

B ¼ 2
pð11…0Þ
20…0 þ � � � þ pð0…011Þ

0…02

NðN − 1Þ ¼ 2

N
; ð17Þ

which is also the upper bound on bunching in our model.
On the other hand, some additional restrictions are required
to recover quantum behavior for N > 3 and K > 3. For
example, we have considered the case N ¼ 4 and K ¼ 4
and observed that the following transformation admits
superquantum bunching while satisfying all the restrictions
of our model:
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ð18Þ

Perhaps an extended version of the product state argument
is needed to explain all but the simplest cases.
Conclusions and outlook.—We have proposed an opera-

tional description of the evolution of noninteracting indis-
tinguishable particles. The model is particularly related to
linear optical experiments with multipartite interference of
bosons or fermions. Our approach explores bunching in
generalized theories. In particular, we show that our
framework admits exotic bunching probabilities. The
superquantum symmetric 3-port (tritter) we present could
be considered a PR-box counterpart in the realm of particle
statistics. In this case an additional principle, governing the
evolution of a certain class of states, is enough to recover
the bosonic bounds. However, it is not sufficient in higher-
order multiports. There are a few possibilities for why this
happens. First, our principle may need extension to include
more general classes of states, not only those in which all
the particles are in the same mode. Moreover, symmetric
quantum n-ports (for n > 3) have more than one inequi-
valent representation [25]. For example, a 4-port can be
described by a discrete Fourier transform, but also by
a Groover-like unitary matrix. The two representations
generate different output probability distributions.
Nevertheless, they both lead to the same maximal bunching
probabilities, which suggest that fundamental laws behind
bosonic behavior go beyond the subtleties of particular
evolutions (see the Supplemental Material [26] for details).
This work fits into the very lively field of research on

explaining elements of the quantum mechanics with intui-
tive principles. Investigation of particle statistics admitted
by superquantum theories is of general interest, as it might
lead to new tests of quantum foundations. We hope that our
results will be a stimulating contribution to this endeavor.
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