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New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses
while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus
hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than
intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for
polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy
state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light
on the future development regarding an improved theoretical account for molecular mechanics of polymer
glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.
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High molar-mass polymers are complicated, especially
strongly correlated many-body systems. Their mechanical
responses to large deformation are challenging to describe
both in their molten state where chain entanglement
is a dynamic topological consequence of intermolecular
uncrossability and in their glassy state where intersegmen-
tal interactions disguise the role of the chain network.
Unlike other types of materials such as ceramics and
metals, polymeric materials are highly stretchable in their
liquid state (rubber bands being an example) and drawable
in their glassy state, e.g., capable of doubling the equilib-
rium length. Above the glass transition temperature Tg,
melts’ high rubbery extensibility is widely understood in
terms of a phantom network of Gaussian chains that can be
stretched multiple times their original sizes before becom-
ing straightened. However, below Tg, a sufficiently high
molecular weight does not guarantee ductile drawing.
Although the concept of chain entanglement has been
invoked for decades [1,2] to acknowledge the prerequisite
of high molecular weight for ductility, it was unclear [3–5]
just how polymer entanglement would afford a glassy
polymer the unique properties such as the extraordinary
ductility demonstrated by bisphenol A polycarbonate (PC).
Despite its high glass transition temperature Tg at 145 °C,
PC is ductile without brittle fracture even at −120 °C.
For ductile polymer glasses, Kramer’s criticism [6] on a

conventional view to regard strain hardening as due to
“rubber elasticity” provided the new impetus to evaluate
intermolecular contributions to the macroscopic stress.
Several subsequent studies [7–14] supported the view that
(a) postyield deformation of polymer glasses is largely
dissipative, (b) changes in intersegmental packing can
lead to an increase of stress with strain and (c) even

low-molecular weight polymer glass was reported [9] to
show strain hardening.
Initial stress growth in melt deformation is widely

regarded as due to intrachain retraction forces of stretched
strands in the entanglement network. The intrachain forces
can make a melt-stretched polymer to undergo complete
elastic recoil. For polymer glasses it is far less clear whether
or not intrasegmental forces make a dominant contribution to
the tensile stress in the postyield extension (ductile drawing).
After significant ductile cold drawing well below the glass
transition temperature Tg and unloading without external
constraint, a deformed polymer glass would soon stop any
visible contraction and retain its extended length during the
sequent days of storage at the cold-drawing temperature.
There would be no macroscopic retractive stress. On the
other hand, upon annealing of such a cold-drawn glassy
polymer above the storage temperature but still well below
Tg, retractive stress can develop in time [15–17].
In this work, we design several experiments to explore

the molecular origin of macroscopic stress in both preyield
and postyield regimes and verify the emerging picture [18]
using molecular-dynamics computer simulation. The chal-
lenge to explore the molecular origin of stress during
ductile deformation well below Tg stems from the fact that
the alpha relaxation time τα is inconveniently long. Figure 1
shows that at room temperature the stress relaxation after
postyield extension of PC is extremely slow at long times,
as slow as that from preyield deformation. By conducting
the experiment at higher temperatures, Fig. 2 shows that τα
becomes shorter than 1000 s at 135 °C.
In this work, we explore the molecular origin of

mechanical stress during ductile extension of polymer
glasses by characterizing the stress relaxation behavior
in both preyield and postyield regimes, at 10 to 15 degrees
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below Tg. The diamonds in Fig. 3 show that the tensile
stress from preyield vanishes in 60 min for PC at 135 °C.
This stress decay can conventionally be explained in terms
of segmental alpha relaxation and reveals an alpha relax-
ation time τα on the order of 10 min, as indicated in Fig. 2.
During the cold drawing, beyond the elastic preyield
regime, shear yielding occurs, leading to the stress decline,
followed by necking and neck front propagation during

which the tensile stress remains constant. The stress
relaxation behavior from the postyield regime is remark-
ably different as shown by the circles in Fig. 3, where the
inset presents the stress vs strain curve, along with the three
vertical arrows to indicate the three stages at which the
stress relaxation test begins. Specifically, in contrast to the
stress relaxation from preyield elastic deformation (dia-
monds), the stress relaxation at the yield point (squares)
reveals some residual stress at long times; moreover, there
is significant stress at long times for L=L0 ¼ 1.7 (circles—
after completion of necking).
Recent consensus suggests [14] that mechanical stress

during plastic deformation is dominantly dissipative, leading
to the expectation that the circles in Fig. 3 should approach 0
as fast as the diamonds: If the stress is generated by
intersegmental interactions, the stress should vanish in
60 min via the alpha process as it does in the preyield
regime; moreover, much of the initial rapid stress decline
should also involve intermolecular repacking. However,
unexpectedly, not only does the stress stays high on the
pertinent time scale of 60 min, but even the squares remain
nonvanishing after 60 min of relaxation from the yield point.
To determine whether the observations in Fig. 3 are

universal, we carried out similar extensional drawing of
glassy polystyrene. The polystyrene in the present study
has Tg ¼ 103 °C. Therefore, we carried out the stress
relaxation at T ¼ 100 °C from preyield at L=L0 ¼ 1.02
as well as postyield at L=L0 ¼ 1.92 beyond the completion
of necking. As shown in Fig. 4, the stress relaxation from
preyield extension occurs on a time scale of several
hundred seconds. In contrast, the stress remains high after
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FIG. 2. Alpha segmental relaxation time τα determined
from both small-amplitude oscillatory shear (SAOS) measure-
ments and Kohlrausch-Williams-Watts (KWW) fitting to the
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postyield extension at L=L0 ¼ 1.92 even after several
thousand seconds. The inset of Fig. 4 shows that the
preyield stress relaxation is rapid on time scales of 102 s
while the postyield relaxation is considerably slower on all
time scales. How could the stress relaxation (circles) be
so slow even initially, much slower than that prescribed by
the alpha process? What does this phenomenon of slow
stress relaxation imply regarding the molecular origin of
the tensile stress during postyield drawing? Ideas such as
intermolecular cooperativity [19] and Eyring activation
[20,21] would suggest that the dynamics should always
be faster after postyield deformation, in contradiction to
such data as shown in the inset of Fig. 4.
Given the importance of these questions, it is necessary

to verify the characteristic revealed in Fig. 4 for polystyrene
(PS). According to a recently published study [22], the
initial stress relaxation from postyield deformation of PC
occurs on time scales in proportion to the reciprocal of the
deformation rate invoked to produce the postyield defor-
mation. This study asserted, consistent with the recent
molecular model for yielding of polymer glasses [18], that
(a) the mechanical stress in postyield should have a
significant intrasegmental contribution and (b) the molecu-
lar mobility produced by the postyield deformation governs
how quickly the intrasegmental component relaxes. Thus,
to confirm the universality of Fig. 4, we subject PC to both
preyield and postyield extension using a sufficiently small
extensional rate and found similar data. As shown in
Supplemental Material, Fig. S.4 indicates that the stress
decay occurs on the time scale of 102 s for step extension at
L=L0 ¼ 1.01 in the preyield regime but the stress hardly
decreases on the same time scale after cold drawing to a
ratio of L=L0 ¼ 2.1 produced at 0.00 44 min−1. We are led
to conclude that the stress present during and after ductile

drawing is not intersegmental because it did not and could
not relax on the alpha relaxation time scale. In particular,
we speculate that at high draw ratios the tensile stress arises
from stretching of the chain network that cannot relax via
alpha processes.
In the glassy state, after large ductile deformation, bond

orientation and stretching may keep the retractive stress high
until collective movements take place on much longer time
scales than the time scale associated with the monomeric
alpha process. Since the alpha process is not collective, it
may not be effective to cause conformational changes that
require structural adjustment on length scales considerably
larger than the monomer scale. Therefore, two specific
features have led to the conclusion that in the postyield
drawing the mechanical stress is intrasegmental in origin.
First, the tensile stress still remains high at long times.
Second, the stress decay after significant postyield extension
can be much slower during every stage of relaxation than the
stress relaxation from preyield deformation. This conclusion
concerning the microscopic origin of stress pertains to many
issues in the literature including (a) the essence of strain
hardening [7–14], (b) elastic deformation and internal energy
buildup in postyield regime [23,24], and (c) “anelasticity”
associated with hidden stress in the glassy state. Although
stress due to intersegmental interactions, e.g., stretching of
van der Waals bonds, can relax through alpha processes, the
segmental relaxation is ineffective to remove chain tension
produced during ductile drawing. Thus, the present study of
stress relaxation has clarified the origin of mechanical stress
during postyield extension.
Formation of a chain network in glassy state requires

intersegmental interactions—chain uncrossability is inher-
ently an intermolecular effect. However, for a strained
chain network to relax its stress requires structural adjust-
ment on length scales significantly larger than the monomer
size. Thus, the stress from postyield deformation stays high
on the alpha time scale, on which comparably high preyield
stress vanishes. Although dynamic and structural hetero-
geneities [25,26] are expected to be present, their existence
does not offer a straightforward account for the observed
remarkable difference between preyield and postyield
stress relaxation. Nevertheless, it would be desirable for
future studies to explore how heterogeneities may affect
stress relaxation on both short and long time scales.
To further illustrate the molecular origin of stress, using a

coarse-grained model for PS [27], we carried out molecular
dynamics simulation to examine the stress responses during
and after cold drawing (uniaxial extension). We found from
the simulation that before yielding both the covalent bonds
and LJ bonds are stretched, resulting in a retractive stress;
in postyield regime, for PS of molecular weight equal to
50 000 g=mol, the buildup of the tensile stress stems from
the resistance of the chain network to the extension.
Beyond yielding, the intersegmental interactions gradually
turn compressive. Figure 5(a) shows the decomposition
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of the stress as a function of the draw ratio L=L0, where
appreciable bond stretching accompanies the growing
tensile stress. Thus, the simulation result supports the
conclusion drawn from the experimental findings in
Figs. 3–5 that the postyield extension produces substantial
conformational changes associated with stretching of a
chain network. Details about the coarse-grained model and
simulation protocol can be found in Supplemental Material
[28] where we show in Fig. S.6 that the molecular origin of
stress is both enthalpic associated with the bond length-
ening and entropic due to the bond orientation.
The molecular dynamics simulation results also support

the interpretation of the experimental data in Figs. 3
and 4 concerning why stress relaxation from preyield
deformation could be much faster than that from postyield:
The origin of stress is largely different between preyield
and postyield. Specifically, Fig. 5(b) shows that the fast
stress decay from preyield occurs due to the available
segmental mobility. As the intersegmental packing recovers

toward its nondeformed state where the intersegmental
stress is compressive, the intersegmental stress changes
from being initially retractive to compressive (negative).
The bonded stress remains unchanged. In contrast, Fig. 5(c)
shows that after postyield drawing the initial rapid stress
decay is dominantly intrasegmental in origin. The inter-
segmental component of the stress hardly changed. If the
stress decay has a significant contribution from interseg-
mental interaction, the intersegmental component would
have to be become more compressive, which is impossible
because the chain network did not further deform in
quiescence. At long times, the retractive stress stays high
because covalent bonds still remain significantly stretched
and oriented, as shown in Fig. 5(d).
To more clearly illustrate the microscopic origin of the

tensile stress during and after cold drawing, we perform
additional analysis to visualize the buildup of chain tension
upon cold drawing to L=L0 ¼ 1.8. Figure 6 shows strands
whose bonds have been stretched to a bond length of at
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least 2.6 Å and remained so stretched 4 ns after the onset of
the stress relaxation. The global retractive stress partially
stems from these taut strands that permeate from one end of
the system to the other end. Figure 6 indicates that some of
these load-bearing strands still survive after significant
relaxation at t ¼ 24 ns. Such taut states have been observed
in previous molecular dynamics (MD) simulations [8,9].
In conclusion, we show by experiment and MD simu-

lation that deformation of a chain network at the bond level
(leading to bond orientation and stretching) is the leading
cause of the emergent tensile stress during ductile extension.
During stress relaxation from postyield extension, bond
orientation is unable to relax on the alpha time scale so
that a retractive stress survives on long time scales. MD
simulation confirms that the retractive tensile stress is
intrasegmental in origin due to orientation and stretching
of the backbone bonds. It remains an intriguing question
whether nonpolymeric glasses such as colloidal glasses [36]
could ever display slower stress relaxation from postyield
deformation than from preyield deformation.
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