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We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their
winding number w, a topological quantity of the Bloch bands. Specifically, in a CN-invariant chiral fermion
system, the angular momentum of bright exciton states is given by w� 1þ nN with n being an integer. We
demonstrate our theory by proposing two chiral fermion systems capable of hosting dark s-like excitons:
gapped surface states of a topological crystalline insulator with C4 rotational symmetry and biased
3R-stacked MoS2 bilayers. In the latter case, we show that gating can be used to tune the s-like excitons
from bright to dark by changing the winding number. Our theory thus provides a pathway to electrical
control of optical transitions in two-dimensional material.

DOI: 10.1103/PhysRevLett.120.077401

Our understanding of optical absorption in semiconduc-
tors relies on two essential approximations [1]. The first is
the effective mass approximation [2], in which the electron
and the hole are considered as two particles moving with
the effective masses of the conduction and valence bands,
respectively. In the presence of the Coulomb interaction,
the electron-hole pair will form a hydrogenlike bound state
known as the exciton [3], which plays a crucial role in
semiconductor optics. The second approximation is the
electric dipole approximation. Within this approximation,
the interband optical transition is usually understood in
terms of the transition between atomic orbitals that make up
the Bloch functions. Together, these two approximations
yield the optical selection rule for excitons, as derived in a
classic paper by Elliott [4]: If the band edge transition is
dipole allowed, then only the s-like excitons are bright and
the rest are dark. Despite its simplicity, this theory is quite
versatile and can be further generalized to include com-
plications such as band degeneracy, anisotropy, and spin-
orbit interaction.
However, the validity of the above theory has been

recently challenged in a new class of materials called
gapped chiral fermion (CF) systems. Examples include
gapped topological surface states [5], biased bilayer gra-
phene [6,7], and monolayers of group-VI transition metal
dichalcogenides such as MoS2 [8–10]. It has been shown
that in these systems the effective mass approximation must
be modified to include the Berry phase [11] carried by the
CFs to give a proper account of the exciton energy
spectrum [12,13]. At the same time, anomalous exciton
optical selection rules have also been found in these
systems. For example, it has been shown that both the
s-like and d-like excitons are bright in monolayer MoS2,
and their optical transitions have opposite circular polari-
zation [14], while in biased bilayer graphene it is the p-like
excitons that are bright [6]. These results suggest that a new

exciton optical selection rule must be established in gapped
CF systems.
In this Letter, we show that the exciton optical selection

rule in gapped CF systems is governed by their winding
number w [see Eq. (1) below], a topological property of the
Bloch bands [15,16]. Specifically, we find that the bright
excitons in an isotropic CF system have angular momentum
m ¼ w� 1. When the full rotational symmetry is reduced
to discrete CN symmetry by the crystal field effect, the
allowed angular momentum of bright excitons expands to
m ¼ w� 1þ nN, where n is an integer. Our theory thus
gives a unified view of the optical selection rule previously
found in various gapped CF systems [5,6,14]. To further
demonstrate our theory, we propose two gapped CF
systems capable of hosting dark s-like excitons. The first
is gapped surface states of a topological crystalline insu-
lator with C4 symmetry. The second is 3R-stacked MoS2
bilayers. In the latter case, we show that gating can be used
to tune the s-like exciton from bright to dark by changing
the winding number. The value of the gate voltage to realize
such a dark-bright transition is within experimental reach.
Our study, together with the previous result of the Berry
phase effect on the exciton spectrum [12,13], provides a
basic description of the electronic structure of excitons in
gapped CF systems.
We begin with the k · pHamiltonian for an isotropic two-

dimensional CF model with an integer winding number w:

H0 ¼
�

Δ αðjkjÞeiwϕk

αðjkjÞe−iwϕk −Δ

�
; ð1Þ

where 2Δ is the energy gap and ϕk ¼ tan−1ðky/kxÞ. This
Hamiltonian describes a wide range of material systems.
For example, both gapped topological surface states [5] and
monolayer MoS2 [8] have αðjkjÞ ∝ jkj with the winding
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number w ¼ 1, and biased bilayer graphene has αðjkjÞ ∝
jkj2 with w ¼ 2 [17]. In fact, in graphene multilayers, w can
be made arbitrary integral values [18]. We note that this
model also includes the special case of a zero winding
number, even though it cannot be called a chiral fermion
anymore. The energy dispersion of this model is given by
εc;v ¼ �εk ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ α2ðjkjÞ

p
with the corresponding

eigenstates

jcki ¼
�

cos θk
2

sin θk
2
e−iwϕk

�
; jvki ¼

�
sin θk

2
eiwϕk

− cos θk
2

�
; ð2Þ

where θk ¼ cos−1ðΔ/ϵkÞ. The wave functions have a U(1)
gauge freedom. Here we fix the gauge by demanding that
both jcki and jvki have no singularity at the band edge
(k ¼ 0). Under this gauge choice, the labeling of excitons
by their angular momenta returns to that of the hydrogenic
model in the large gap limit [12].
An exciton in a general two-band model can bewritten as

a linear combination of electron-hole pairs:

jΨðqÞi ¼
X
k

fqðkÞa†ckþqavkjΩi: ð3Þ

Here jΩi is the semiconductor ground state with the valence
band filled and the conduction band empty, and a†ckþq (avk)
creates an electron (hole) in the conduction (valence) band.
The coefficient fqðkÞ is the exciton envelope function,
where q and k are the center-of-mass and relative momen-
tum of the electron-hole pair, respectively. For photoexcited
excitons, the center-of-mass momentum q is negligible,
which will be set to zero and omitted hereafter. In the
isotropic model, the angular momentum m is a good
quantum number; thus, the envelope functions have the
following form:

fmðkÞ ¼ f̃mðjkjÞeimϕk : ð4Þ
Finally, the oscillator strength of an exciton with angular
momentum m under circular polarization is given by

Om ¼ 1

μEex
m

X
η¼�

����
Z

dkf̃mðjkjÞeimϕkvηðkÞ
����
2

; ð5Þ

where vηðkÞ ¼ hvkjv̂ηjcki is the interband matrix element
of the velocity operator v̂η ¼ v̂x þ iηv̂y with v̂x;y ¼
∂H0/∂kx;y, Eex

m is the exciton energy, and μ is the reduced
mass.
It should be pointed out that there are generally two

contributions to the velocity matrix element: One is from
the electron hopping between lattice sites, and the other
from the dipole transition between localized orbitals [19].
Here we consider only the former contribution while
neglecting the latter. This is justified for the systems
considered in this Letter. In MoS2, the conduction and
valence band edges are mainly formed by the Mo d orbitals,
with slight mixing from the S p orbitals [20]. There is no

dipole transition between the even-parity d orbitals, and
transitions between d and p orbitals are negligible.
Similarly, in gapped graphene systems, the atomic orbitals
involved are carbon pz orbitals, and optical transitions
among them are dipole forbidden.
Near the band edge, the angular dependence of the

velocity matrix element is given by [21]

hvkjv̂�jcki ∝ e−iðw∓1Þϕk : ð6Þ
It then follows from Eq. (5) that after angular average only
exciton states with m ¼ w� 1 have a nonzero oscillator
strength. In addition, optical transitions to these two
angular momentum states always have opposite circular
polarization. We emphasize that it is the k-space phase
winding of the velocity matrix element, a feature not
available in the atomic transition picture, that determines
the exciton optical selection rule of gapped CF systems.
Although both wþ 1 and w − 1 states are bright, their

oscillator strength can be quite different. For simplicity, we
assume αðjkjÞ ¼ αjkjw. The velocity matrix elements take
the form

hvkjv̂þjcki ¼ −2αwcos2
θk
2
kw−1e−iðw−1Þϕk ;

hvkjv̂−jcki ¼ 2αwsin2
θk
2
kw−1e−iðwþ1Þϕk : ð7Þ

In the large band gap limit, i.e., Δ ≫ αkwB, where kB is the
inverse of the exciton Bohr radius, we have cosðθkB /2Þ ≫
sinðθkB /2Þ. In this case, the m ¼ w − 1 exciton states are
much brighter than the m ¼ wþ 1 states.
So far, we have considered only the isotropic case.

However, in a crystalline environment, the C∞ symmetry is
reduced to CN by the crystal field effect, which will modify
the optical selection rule. The modifications come from two
places. First, the exciton state with angular momentumm is
mixed with those with angular momentum mþ nN:

fmðkÞ → f̃mðjkjÞeimϕk þ
X
n≠0

cnf̃mþnNðjkjÞeiðmþnNÞϕk ; ð8Þ

where n is an integer and cn is the coefficient for each
angular momentum channel, whose form has been derived
in Ref. [21]. Second, the velocity matrix element is also
expanded into a series of angular momentum channels [21]:

hvkjv̂�jcki ¼
X
n

vne−iðw∓1þnNÞϕk : ð9Þ

According to Eq. (5), the exciton selection rule now reads

m ¼ w� 1þ nN: ð10Þ
This is a reflection of the fact that in a CN-invariant system
the angular momentum is defined only modulo N [22].
Finally, we note that the optical transitions to the m and
ðmþ nNÞ states have the same circular polarization.
Now we examine our theory in the two previously

studied systems. The first one is monolayer MoS2 with
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winding number w ¼ 1. According to our theory, the s- and
d-like excitons should be bright with opposite circular
polarizations when the crystal field effect is ignored, and
the s state should be much brighter than the d state due to
the relatively large band gap in MoS2 (αkB/Δ ∼ 0.1) [8,12].
If we turn on the crystal field, the symmetry is reduced from
C∞ to C3. In this case, the p-like state with m ¼ −1, which
is dark in the isotropic model, becomes bright and has the
same polarization as the d-like excitons with m ¼ 2. This
result agrees with the direct calculation in a recent
study [14].
The second example is the biased bilayer graphene [6],

which is described by the following effective Hamiltonian
[17]:

HBLG ¼
�

Δ αk2þ
αk2− −Δ

�
þ 3γ3

�
0 k−
kþ 0

�
; ð11Þ

where k� ¼ kx � iky and γ3 is the interlayer hopping
amplitude. The first term in HBLG describes an isotropic
CF model with winding number w ¼ 2. This term alone
would give rise to dark s states, since only the m ¼ 1 and
m ¼ 3 states are bright. However, in the presence of
the γ3 term, which reduces the C∞ symmetry to C3, the
optical transitions to s-like states are turned on and
have opposite circular polarization compared to the p-like
states. Similarly, the m ¼ −2 states also become bright
(see Fig. 1).
To estimate the crystal field effect, we have carried out a

perturbative calculation by treating γ3 as a small quantity in
the large band gap limit [21]. We find that the modification
to the exciton envelope function is a higher-order

contribution, and the main effect of the crystal field comes
from its modification to the velocity matrix element, which
is proportional to γ3. Accordingly, the ratio of the oscillator
strength between the s and p states should be proportional
to 9γ23/ð2αjkBjÞ2 [21]. According to Ref. [6], the k-space
radius of the exciton envelope function is kB ∼ 0.02 Å−1,
which gives 9γ23/ð2αjkBjÞ2 ∼ 0.02. Note that, from a pure
group theory point of view, we can also come to the
conclusion that the s-like excitons are bright. In contrast,
our theory provides a quantitative estimation of the bright-
ness of the s state.
The fact that it is the C3 symmetry that turns the s-like

excitons bright in a w ¼ 2 CF system suggests that, by
switching to a different rotational symmetry, the s states can
remain dark. One such system is the gapped surface states
of a topological crystalline insulator with a possible C4

rotational symmetry [23]. The Hamiltonian for the surface
states in such a system is given by

HTCI ¼ a1

�
Vz k2þ
k2− −Vz

�
þ a2

�
Vz k2−
k2þ −Vz

�
; ð12Þ

where Vz is the gap opened by a time-reversal-breaking
perturbation [21,23]. We can see that this model is a
mixture of CFs with w ¼ �2. The simultaneous existence
of both winding numbers reduces the rotational symmetry
to C4, and the s states remain dark.
Apart from varying the symmetry group, we can also

obtain dark s states by switching to a different winding
number while keeping the C3 symmetry. For this purpose,
let us consider 3R-stacked MoS2 bilayers. In the 3R-
stacked bilayer structure, the top layer is shifted relative
to the bottom layer along the honeycomb armchair edge, as
shown in Fig. 2. Neglecting the spin degree of freedom, the
effective Hamiltonian at one of the corners of the hexagonal
Brillouin zone is given by [21]

H3R ¼

0
BBB@

ΔI þ Vg v0k− 0 0

v0kþ −ΔI þ Vg γ1 0

0 γ1 ΔI − Vg v0k−
0 0 v0kþ −ΔI − Vg

1
CCCA;

ð13Þ

where ΔI is the gap opened by the broken inversion
symmetry in each monolayer, Vg is the out of plane gate
voltage, and v0 and γ1 are the intralayer and interlayer
hopping coefficients, respectively. We have kept only the
isotropic part of the Hamiltonian, which is sufficient to
demonstrate the essential physics. An interesting feature of
this system is that by varying Vg one can switch the band
order within the conduction and valence bands (see Fig. 3).
If we assume that ΔI is large compared with the interlayer
hopping constant γ1, the critical value of the gate voltage

FIG. 1. The exciton optical selection rule of the w ¼ 2 chiral
fermion model when the symmetry is reduced from (a) C∞ to
(b) C3. The black lines indicate dark states, and the red (blue)
lines are bright states with σ− (σþ) polarization. The solid lines
represent positive angular momenta, and the dashed lines
represent negative angular momenta.
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Vgc at the band crossing point is approximately γ21/2ΔI. For
intralayer band gap ΔI ≈ 0.8 eV and interlayer hopping
γ1 ≈ 0.05 eV [24], the required Vgc is about 1.5 meV,
which is not difficult to achieve in an experiment [25].
The ability to switch the bands is important, because the

winding number is a topological quantity; it can be changed
via band crossing only if the rotational symmetry is kept
invariant. To find the winding number before and after the
band crossing, we downfold the Hamiltonian (13) to project
out the higher conduction band and the lower valence band
[26]. Before the band crossing, i.e., Vg < Vgc, the down-
folded Hamiltonian reads

Hbefore ¼
0
@ΔI þ Vg

v2
0
γ1

4ΔIVg
k2−

v2
0
γ1

4ΔIVg
k2þ −ΔI − Vg

1
A: ð14Þ

We can see that the winding number w ¼ 2, similar to the
biased bilayer graphene. This is not surprising, because
each monolayer MoS2 carries winding number w ¼ 1, and,
in the 3R-stacking, one can simply add the winding
numbers together [27]. In this case, the s-like exciton is
bright in the presence of the C3 symmetry. After the band
crossing, i.e., Vg > Vgc, the 2 × 2 Hamiltonian is

Hafter ¼

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ ðΔI − VgÞ2

q
− v2

0
γ1ðΔIþVgÞ

4ðΔI−VgÞΔIVg
k2

− v2
0
γ1ðΔIþVgÞ

4ðΔI−VgÞΔIVg
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ ðΔI − VgÞ2

q
1
CA:

ð15Þ

Clearly, the winding number is changed to w ¼ 0. Hence,
m ¼ �1 states become bright. Turning on C3 symmetry
makes m ¼ �1;�4;… states bright, but the s states
remain dark.
Up to now, we have omitted the valley degree of

freedom, which exists in most chiral fermion systems such
as graphene and MoS2 monolayers. Different valleys carry
an opposite winding number as a result of the time-reversal
symmetry. The corresponding optical transitions therefore
have opposite circular polarization. However, intervalley
coupling of exciton states via the same circularly polarized
light is unlikely, since the bright exciton states in the two
valleys usually have different energies (for the same
circular polarization).
In conclusion, we have established a new optical

selection rule of excitons in a gapped CF system. We
found that the angular momentum of bright excitons is
w� 1 in the isotropic cases, and the circular polarizations
of these two states are opposite. When the crystal field
effect is taken into account, the optically bright excitons
have angular momentum ðw� 1Þ þ nN if the system has
N-fold rotational symmetry. We showed that, by proper
combinations of the winding number and rotational sym-
metry, one can engineer dark s states in CF systems. The
occurrence of dark excitons has already been under intense
experimental investigation [28–31]. Such a dark exciton
has a prolonged lifetime [32] and can be utilized to realize
exciton condensation [33–35] and implement quantum
information protocols [36,37].

This work is supported by the Department of
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SC0012509. D. X. also acknowledges support from a
Research Corporation for Science Advancement Cottrell
Scholar Award.

X. Z. and W. S. contributed equally to this work.

Note added.—Recently, we have become aware of a recent
paper, Ref. [38], which also studied the exciton optical
selection rule in graphene systems.

FIG. 2. Top view of 3R-stacked MoS2 bilayers. The large dots
are Mo atoms, and the small ones are S atoms. Red (blue) dots
refer to the atoms in layer 1 (2).

FIG. 3. Band structure of a biased 3R-MoS2 bilayer at
(a) Vg ¼ 0 eV and (b) Vg ¼ 0.3 eV. Bands with different colors
belong to different irreducible representations of the C3 group
and layer number (1,2). The parameters used are ΔI ¼ 0.83 eV
and v0 ¼ 3.5 eV Å [24]. We used a large interlayer hopping
term, γ1 ¼ 0.3 eV, to make the band separation visible.
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