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Realizing the potential for predictive density functional calculations of matter under extreme conditions
depends crucially upon having an exchange-correlation (XC) free-energy functional accurate over a wide
range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with
systematic construction of a generalized gradient approximation XC free-energy functional based on
rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct
temperature dependence in the slowly varying regime and the correct zero-T, high-7, and homogeneous
electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the
calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and
elevated T'. Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate
the combined magnitude of thermal and gradient effects handled well by this functional over a

wide T range.
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Introduction.—Interest in high-energy density physics
(HEDP) is burgeoning [ 1-25]. Notable facilities include the
Matter in Extreme Conditions instrument at the Linac
Coherent Light Source (LCLS), the ORION Laser, the
OMEGA Laser System, the Sandia National Laboratories Z
machine, and the GSI PHELIX laser facility [10,16,26-32].
A particularly challenging state-condition regime is so-
called warm dense matter (WDM). Characterized by
elevated temperature 7 and a wide range of pressures P,
the best practice for predictive WDM and HEDP calcu-
lations is to use finite-7' density functional theory
[1,16,19,20,24,33-37] to drive ab initio molecular
dynamics (AIMD) [38—41]. Reliable predictions require
accurate free-energy density functionals adequate to the
state conditions.

Currently, almost all AIMD matter-under-extreme-con-
dition simulations use a ground-state exchange-correlation
(XC) functional. Unlike the ground-state situation, there are
only a few very approximate free-energy XC functionals.
Despite the fact that density-gradient dependence [via the
generalized gradient approximation (GGA)] is well estab-
lished as essential reasonable ground-state descriptions,
there is no counterpart GGA XC free-energy functional.
The simplest XC free-energy functional is the local density
approximation (LDA), based on the density and 7 depend-
encies of the homogeneous electron gas (HEG) free energy.
Our recent parametrization of path integral Monte Carlo
(PIMC) data for the HEG at finite 7 provides a suitable
LDA (the Karasiev-Sjostrom-Dufty-Trickey (KSDT)
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functional) [42,43]. As with the ground state, the finite-
T LDA is not enough for predictive purposes.
Reference [53] showed that accurate predictions require
an XC free-energy functional that incorporates both intrin-
sic T and density gradient effects. Earlier thermal Hartree-
Fock results [54,55] are consistent with that assessment.
Until now, the few XC free-energy functionals that might
meet the need include random-phase approximation and
classical mapping functionals [56,57] and a combination
(“SD14”) [58] of gradient dependence from ground-state
GGA EY9A and explicit T dependence only from the LDA
XC free energy. None of these is a true finite-7” GGA, in
stark contrast with the ground-state situation.

In this Letter, we remedy that major deficiency by
providing an authentic GGA XC free-energy density func-
tional. We describe constraints and limits for identifying
suitable reduced density gradient variables and construct-
ing a proper, nonempirical GGA XC free-energy func-
tional. Analogously with Ref. [59] for construction of a
noninteracting free-energy GGA, here we develop the
generalization of 7= 0 K XC parametrization variables
to 7> 0 K. We construct new X and C enhancement
factors that handle the unique properties of those variables
correctly. We illustrate the efficacy and accuracy of the new
functional with a calculation on deuterium and two sets of
calculations on Al. Significant deficiencies in the use of
ground-state XC functionals are exposed. In particular,
only the new GGA functional, denoted KDT16 hereafter,
gives agreement with PIMC results on deuterium. In Al, the
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P shifts AP(T') between LDA and the ground-state Perdew-
Burke-Ernzerhof (PBE) functional [60] have the wrong
sign compared to those from all known constraint-based
free-energy XC functionals (new KDT16, SD14, and
corrected KSDT, denoted corrKSDT [43]).

Requisites.—Systematic construction of a GGA XC free
energy rests on three requisites. (a) The finite-7T LDA XC
must be recovered in the HEG and high-7" limits; high-T
effects within the LDA XC free energy prevail over the
gradient contributions there. (b) Proper T-dependent
reduced density gradient variables must be consistent with
the XC free-energy gradient expansion. Use of those
variables in the GGA enhancement factors for X and C
must recover the weakly inhomogeneous electron gas
regime correctly. () As T — 0 K, the GGA XC free
energy must reduce to a ground-state functional that
satisfies known constraints for the ground-state XC energy.

Regarding item (c), though there are more refined
nonempirical ground-state GGA XC functionals [61], we
choose to recover the popular PBE functional [60]. This
choice enables use of existing resources such as projector
augmented wave (PAW) data sets and pseudopotentials.
The XC free-energy functional then is constructed by
adding finite-7" constraints [according to requisites (a)
and (b)] to ground-state ones used to determine PBE.

Finite-T gradient expansion.—As with the ground state,
the second-order gradient correction for the XC free-energy
density is [62—67]

nf§%>(n,vn,T):%gi?(n,r)wn(rw. (1)

Reference [58] provides gﬁ)(n, T) numerically. In terms of

the ground-state reduced density gradient variable s =
|Vn|/2(37)"/3n*3 and reduced temperature t = T/T =
2kpT /(32207 = (2/3)*177° (Bu). with T as the Fermi
temperature, the X and C contributions are

f)(czc)(n, Vn,T) = C&Q)E}DA(n)sz(n, Vn)B, (1)
+ CP B2 (n, Vn)B.(n.1).  (2)

Here f = 1/kgT, I is a Fermi-Dirac integral [68,69], £LPA
is the ground-state LDA exchange energy per electron, and
B, (1) is a combination of Fermi-Dirac integrals (details
below), hence a function of ¢ alone. Note the X gradient
correction factorization into a product of the familiar s> and
a function of ¢ alone. Note also that EC depends on both n
and ¢ [70], and that difference causes the finite-7' GGA for
X and C to be treated separately.

Finite-T GGA exchange.—GGA functionals are defined
with respect to LDA. The X free energy per particle LDA at
chemical potential u has the factorized form [73]

FEPA(n,T) = P2 (m)A, (1), (3)
Ah) = %/_Zﬂ) 2, 5 (n)dn. (4)

To exploit this form, the second-order gradient expansion
(GE2) for the X free energy [recall Eq. (2)] can be written as
[64-67,71,74]

S (n,Vn,T) = fP(n,T) (1 + %?—Egsz(n,Vn)).
(5)

B ._ % 4/3 4/3 I/—l/z(ﬁ/") 2_ I/—/1/2(ﬂﬂ)

B:r) = (2> i v) |:<I—1/2(ﬂ/")> 31—1/2(@“)]'
(6)

Primes indicate differentiation with respect to the argu-
ment. Details and accurate fits for ;\x and B, as explicit
functions of y = 2/3¢*/? (or functions of ¢ after a variable
change) are in Ref. [76].

GGA construction requires identifying appropriate
reduced gradient variables from the gradient expansion.
Equation (5) exposes the X free-energy appropriate reduced
density gradient as

)

55.(n,Vn,T) = s*(n,Vn NX( . 7
2x( ) =57 )Ax B (7)
[Remark: we cannot define the appropriate variable linearly

in s because B, (1) has both signs; see below.] Then, the X
free-energy GGA becomes

FIOA[, 7] = / WP (0, TVF (s,)dr. (8)

an evident generalization of the GE2 X free energy
[Eq. (5)]. It is straightforward to show that

%irr(l)sh(n, Vn,T) = s*(n, Vn). 9)

The left-hand panel of Fig. 1 shows both Ax and the ratio
s,./s% = B, /A, as functions of ¢. A, vanishes in the high-T
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FIG. 1. (Left) Behavior of A, and s,,/s> = B, /A, as functions

of 1. (Right) Comparison of B, (r,,t) reference data (symbols)
and analytical fit (curves) for selected r, values.
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limit, but B, decays more rapidly (see Ref. [76] for the

relevant asymptotic expansions) such that the ratio Bx /Ax
eventually vanishes as well. That guarantees satisfaction of
the correct high-7 limit for X [provided that F(0) = 1; see
additional comments below Eq. (10)]. Further, the defi-
nition Eq. (8) guarantees that the X free energy scales
correctly [77,78], F$9A[n,, T] = AFSCA[n, T/2%], with
n,(r) = ’n(Jr).

Because of Eq. (9), the simplest approximation for a
finite-7' X enhancement factor F(s,,) might seem to be a
zero-T GGA X enhancement factor. That would meet
requisite (c) above. However, the distinctive sign change
of s,, near t = 1 (Fig. 1) precludes straightforward adop-
tion of popular choices such as the PBE enhancement factor
[60] because unphysical poles could result. A more refined
finite-7" generalization is required.

A well-behaved X enhancement factor arises from
imposition of the following constraints: (i) F,(0) =1 to
recover the HEG limit at all T; (ii) recovery of the T
dependence of the GE2 in the small-s limit F,(s,,)~
1 +v,sy, with v, a constant consistent with the s>
coefficient in the 7= 0 K limit GGA; (iii) local satisfac-
tion of the zero-T Lieb-Oxford bound [79] by requiring
F (52,) < Fymax = 1.804 (see [60]); and (iv) smooth, non-
negative behavior for all s,, €] — o0, +-00[, to match the
behavior of exact X at finite 7' [80].

A simple enhancement factor

UxSox

Fo(sy,) = 1 422520
(2 = 1 T

(10)
with @ = v, /(F,max — 1) satisfies all of those constraints.
Additionally, (10) with suitably chosen constants recovers
PBE X in the zero-T limit: s,, — 5% = lim;_oF(s5,) =
1 +v,s?/(1 +as?). In the high-T limit, the density-
gradient dependence of s,, is suppressed by the decaying
tail of the B,(f)/A.(t) function (see Fig. 1), such that
limy_ o F,(s5,) = 1. Constraint (i) thus is satisfied not only
for the strictly homogeneous case (s = 0), but also for
nonuniform densities with any finite s value. This property
is inherited correctly by the finite-7 GGA [Eq. (10)] from
the GE2 [Eq. (9)].

Finite-T GGA correlation.—Recall that C and X differ in
that BC depends upon both n and ¢. The Supplemental
Material [44] gives details of the BC analytical fit developed
in this work. It uses numerical results from Ref. [58], static
local field corrections [81,82], and quantum Monte Carlo
data for the finite-7 HEG [83]. The right-hand panel of
Fig. 1 shows the smooth T and r; dependencies of Bc. It is
everywhere positive, goes to unity in the zero-¢ limit (by
construction), and vanishes in the high-7" limit (thereby
guaranteeing the correct high-7 limit for correlation). At
and below 7 ~ 0.2, enforcement of total entropy positivity
for physical systems necessitated that the B, fit lie below
the data [44].

With E’C in hand, the fact that the C term in Eq. (2)
is proportional to n'3s2B.(r,.1) < ¢*B.(ry,1) [with
q(n,Vn) = |Vn|/2k;n the ground-state variable and
ky = 2(3n/x)"/®] motivates definition of the T-dependent
reduced density gradient for C as

q.(n,Vn,T) = q(n,Vn)\/BC(rs,t). (11)

In terms of ¢., the finite-T GGA C functional is
determined by imposition of the following conditions.
The functional must (v) provide the correct HEG limit
both at zero and finite T, i.e., reduce to the LDA C (free)
energy; (vi) reproduce the slowly varying regime correctly;
for T > 0, the correct T dependence in that regime is given
by l§c; (vii) satisfy known T = 0 K constraints for C (e.g.,
Ref. [60]); (viii) reduce to the LDA C free energy in the
high-T limit for any n with finite reduced gradient ¢ (in
consequence of the finite-7 gradient expansion).

The simplest approximation that satisfies all these
constraints is based on a known zero-7' GGA correlation
functional [which satisfies (vii)]. 7 dependence is intro-
duced by adapting the PBE form of C energy per particle
(spin unpolarized) to become

fERn.Vn.T) = fPA(n.T) + H(fP*.(=0.q.).  (12)

where fLPA is the LDA correlation free energy per particle,
¢ is the spin polarization fraction, and H is as defined in
PBE [60], but with substitutions as shown. Details are in
Ref. [44]. Thus, the GGA correlation free energy is
FSOAn,T] = [ nfS9(n,Vn, T)dr. In the rapidly varying
case, f99A vanishes due to a ground-state PBE C functional
property, lim, _ H =—fPA In the slowly varying
regime, f90A recovers the second-order gradient expansion
(see Refs. [60,72]) with T dependence described by BC.
Together with the GE2 for X, that also provides the correct
XC T dependence defined by Egs. (1) and (2).

Because BC vanishes in the high-7" limit, requirement
(viii) is satisfied (analogously with the X case) for all
densities with finite values of the variable ¢g. This follows
from lim;_ o H(fP%, ¢, g.) = 0. Thus, the GGA XC free-
energy functional F$%A(n, T] = FSOA[n, T] + FSOA[n, T)
reduces in the high-7 limit to the LDA XC free energy and
eventually vanishes,

lim (FOOA . 7] = FIPA T)) =0, (13)

for any density n with finite reduced gradients s and q.
We used PBE values v, = 0.21951 in Eq. (10) and 8, =
0.066725 in H, Eq. (12). (Remark: to avoid notational
ambiguity, v, and S, are the constants denoted u and f in
Ref. [60].) Thus, the T =0 K limit of our functional,
FSGA[n, T), is the ground-state PBE functional, with the
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minor difference that we use the corrected KSDT
(corrKSDT) parametrization as a suitably accurate LDA
XC free-energy expression [42,43]. Note, however, that
virtually any ground-state GGA XC functional can be
extended systematically into an XC free-energy functional
by use of the framework presented above.

Exemplary WDM applications.—An AIMD simulation
that directly probes the accuracy of the new GGA func-
tional (“KDT16”), is for deuterium at two material densities
and T well into the WDM regime. Figure 2 compares
KDT16 and PBE pressures P relative to high-quality PIMC
data [84] (shown for intermediate and high 7 only due to
low-T PIMC limitations [53]). PBE systematically over-
estimates the pressure. The deviation is significant at
T = 62.5, 95.25, and 125 kK for both material densities,
then decreases as the noninteracting free energy dominates
in the high-T limit. In contrast, the KDT16 pressures are
in excellent agreement with the PIMC values for the entire
T range, with relative deviations < 3%.

This is a crucial finding in two ways. First is that PIMC
codes are not widely available, they are expensive to run,
and PIMC itself is limited as to how far down in 7 it can go.
Second is that hydrodynamic simulations of cryogenic
inertial confinement implosions using the PIMC equation
of state (EOS) tables found significant differences with
respect to simulations based on the SESAME tables [85].
The percentage shifts of pressures from KDT16 versus PBE
are comparable to the PIMC to SESAME P shifts, so using
KDT16 instead of PBE should have similar impact on
hydrodynamic simulations. Note consistency with the
sensitivity of the deuterium principal Hugoniot to
ground-state XC functional details [10].

To isolate static lattice effects, the equation of state for
fcc Al over a wide T range, 0 < T < 300 kK, at slightly
compressed material density p = 3.0 g/cm® (as used in
LCLS experiments [27]) was calculated from three thermal
XC functionals, the new KDT16, SD14, corrKSDT, and
two ground-state functionals [Perdew-Zunger (PZ) [86]
LDA and PBE GGA]. Because LDA is widely viewed as
good for metals, PZ is used as the reference. Calculations
were done with a locally modified version of QUANTUM
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FIG. 2. Ratios of deuterium electronic pressure versus 7 for the
free-energy GGA (KDT16) and ground-state PBE XC func-
tionals, to PIMC reference results. AIMD PAW simulations, I"
point only, for 64 atoms (4500 steps, 7 < 125 kK) and 32 atoms
(4500 steps, T > 125 kK); time step 25-50 asec.

ESPRESSO [87,88]. For the PZ and corrKSDT functionals,
we used a PAW data set built with PZ XC. For KDT16,
SD14, and PBE, we used the PBE PAW data set. All the
calculations were otherwise self-consistent.

The resulting pressure differences shown in Fig. 3
distinguish XC inhomogeneity effects [see (PPBE — PP%)],
thermal XC effects at the LDA level of refinement [see
(PeoKSDT _ pPZy] " and the combined XC effects at the
GGA refinement level in (PXPT16 — PPZ) The new KDT16
functional interpolates smoothly between the PBE values at
low T and the corrKSDT (LDA) values at high 7 (not fully
shown). Pressure differences from both KDT16 and from
corrKSDT have their maximum magnitude at intermediate
T, then decrease. Crucially, the ground-state approxima-
tion, i.e., FOOA[n, T| ~ ES9A[n] systematically overesti-
mates the pressure by as much as ~10% at T between ~40
and 100 kK. The pressures from all proper functionals
eventually go to a common high-7" limit as the XC
contribution becomes negligible compared to the non-
interacting free energy. However, the behavior en route
to that limit is qualitatively different for a free-energy GGA
versus a ground-state functional. Note that SD14 pressures
start to deviate significantly from the values given by
KDT16 at T = 50 kK (¢ ~ 0.27), roughly the beginning of
the WDM regime.

Most importantly, the AP(T) behavior of all three
T-dependent XC functionals differs qualitatively from that
from PBE. AP(T) for PBE is uniformly positive, whereas
AP(T) is negative for each of the explicitly 7-dependent
functionals above some relatively small 7. Almost
surely, therefore, the 7" dependence from PBE is wrong.
This qualitative distinction in the calculated EOS will
have direct consequences for material predictions. An
example is calibration of effective potential approaches.
Reference [89] compared the Al ion-pair distribution from
such a scheme with PBE AIMD results for 7 = 1.1 eV,
p =3.4 g/cm® and deemed the agreement satisfactory. A
similar comparison for the so-called ion feature recently
is in Ref. [90]. For T = 10 eV and p = 8.1 g/cm?, their
“neutral pseudo-atom” model with T;,, = 1.8 eV com-
pares much more favorably with the experimental peak

0.08; T T 20 T T
------------- - —--PBE
0047~~~ =P 15 =+ comKSDT T
\ — o pnkSDT 2 Tt o
5 0 o 7 = & 10p
=] VA korie oz - ~ \ KDT16
§-004 “\‘\\ P ’7[;/ §Q~ 5" .\'
..... A ~—
A, -0.08r -) - T ol e o
N 7 3 0w T T T
-0.12F ~.ias - ShN—- - -l
: o .
-0.16]Hec AL p=3.0 glem’ . fee Al, p=3.0 glem

50 T00 150 200 250 300 9530 100 130200 250300
T (kK) T (kK)

FIG. 3. (Left) Electronic pressure differences AP(T) for the

new KDT16 GGA, SD14 mixed LDA-GGA, corrKSDT LDA,

and ground-state PBE XC functionals, all referenced to PZ

ground-state LDA values; fcc Al, 3.0 g/cm?. (Right) Relative

differences.
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FIG. 4. Relative difference in Al total pressure along six
isotherms (10, 15, 20, 30, 40, 60 kK) for KDT16 and PBE
XC functionals plotted as (PPBE — pKDTI6) /pKDTI6 5 100,

height than the AIMD result with PBE XC. Indeed,
Riiter and Redmer [91] had done an AIMD PBE static
structure factor calculation at 7 = 1023 K (x0.1 eV), p =
2.35 g/cm? that agreed well with experiment for Al. But at
T =10 eV, p = 8.1 g/cm?’, their AIMD-PBE calculation
seriously underestimated the experimental ion-feature peak
height. They attributed this discrepancy to omission of core
electron effects, but had no way to assess EOS effects,
which we have shown here to be substantial.

Given the importance of EOS shifts, our final example is
low-density Al; its measured electrical conductivity exhib-
its pronounced system density dependence [92]. Figure 4
shows that the low-density Al total pressure is strongly
affected by use of the fully gradient- and 7-dependent XC
functional. Shifts relative to it caused by the ground-state
PBE approximation range as high as x50% (T" = 10 kK)
down to 5% (T = 60 kK). Clearly, there is no simple rule-
of-thumb correction for the ground-state functional data.
Nor, on fundamental grounds, is there any reason to assume
that it is the better of the two functionals. (Remark: Fig. S2
in the Supplemental Material shows the ineffectiveness in
identifying errors via direct comparison of KDT16 and
PBE results.)

Implications and Summary.—The nonempirical KDT16
GGA XC free-energy functional is more systematically
constructed and general than the only previous attempt at a
finite-7 GGA [58]. KDT16 treats both density inhomoge-
neity and 7-dependence effects, yet distinguishes them
clearly. Three rather different example calculations show its
accuracy and value. They also confirm that ground-state
GGA functionals are not routinely reliable as free-energy
functionals [15,53,93,94].

The new FSSA has no empirical parameters. As with
ground-state functionals, it involves design choice
[60,95,96] for the gradient-expansion coefficient for X
(v,) and the related C parameter (f.). Yet the underlying
procedure is general. Analysis of the XC gradient expan-
sion leads to appropriate 7-dependent variables for X and
C. Together with the new B, (r,, t) parametrization and the
LDA free-energy parametrization [42,43], one has the basis
for GGA XC free-energy functional development. Virtually
any ground-state GGA X C functional thus can be extended
systematically into an XC free-energy functional by use of

the T-dependent variables [Eqgs. (7) and (11)] within this
framework.
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