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Bismuth is one of the rare materials in which second sound has been experimentally observed. Our
exact calculations of thermal transport with the Boltzmann equation predict the occurrence of this
Poiseuille phonon flow between ≈1.5 and ≈3.5 K, in a sample size of 3.86 and 9.06 mm, consistent with
the experimental observations. Hydrodynamic heat flow characteristics are given for any temperature: heat
wave propagation length, drift velocity, and Knudsen number. We discuss a gedanken experiment allowing
us to assess the presence of a hydrodynamic regime in any bulk material.
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Currently, a lot of attention is devoted to the study of
phonon-based heat transport regimes in nanostructures
[1–4]. Of particular interest is the hydrodynamic regime,
in which a number of fascinating phenomena such as
Poiseuille’s phonon flow and second sound occur and
where temperature fluctuations are predicted to propagate
as a true temperature wave of the form eiðk·r−ωtÞ [5]. The
theoretical study of the hydrodynamic regime has encoun-
tered a renewed interest in graphene nanoribbons, where
the breakdown of the diffusive Fourier law in favor of
the second sound propagation has been predicted [6–9].
Bismuth is a semimetal with relatively low carrier concen-
trations so that the dominant mechanism for heat con-
duction at low temperatures is via phonons [10,11].
Together with solid helium [12] and NaF [13], it is one
of the rare materials that is sufficiently isotopically pure so
that second sound could be observed. Physical and chemi-
cal perfection of Bi crystals is so high that also “transitions”
between the various regimes have been experimentally
observed with the increase of the (yet cryogenic) temper-
ature: from heat transport via ballistic phonons, to the
regime of Poiseuille’s flow with second sound, to the
diffusive (Fourier) propagation [10].
Neither the conditions for the occurrence of the hydro-

dynamic regime nor the transition temperatures have ever
been supported by a theoretical work in one of the above-
cited 3D materials. So far, phonon hydrodynamics has been
studied with the lattice Boltzmann formalism for a model
dielectric material with an ad hoc three-phonon collision
term and no resistive processes [14]. The transition to
the kinetic regime has been modeled in group IV semi-
conductors through a hydrodynamic-to-kinetic switching

factor proportional to the ratio of normal and resistive
scattering rates [15–17]. A review of advances in phonon
hydrodynamics points out the lack of a widely applicable
hydrodynamic model that would consider all of the normal
and resistive processes [5].
In this Letter, a major advance consists of accounting

for the phonon repopulation by the normal processes in
the framework of the exact variational solution of the
Boltzmann transport equation (V-BTE) [18,19], coupled to
the ab initio description of anharmonicity: three-phonon
collisions turn out to be particularly strong at low temper-
atures and lead to the creation of new phonons in the
direction of the heat flow (normal processes), which
enhance the heat transport. This induces time and length
scales over which heat carriers behave collectively and
form a hydrodynamic flow that cannot be described by
independent phonons with their own energy and lifetime.
In other words, the single mode approximation (SMA),
valid for the phonon gas model, breaks down. The resistive
processes are entirely controlled by few phonon-phonon
anharmonic processes, which lead to the creation of
phonons in the direction opposite to the heat flow (umklapp
processes), and by extrinsic processes coming from phonon
scattering by the sample boundaries.
The characterization of heat transport regimes, and, in

particular, of the transition between the hydrodynamic and
kinetic regimes, is the main focus of the present Letter. We
discuss several methods to define the hydrodynamic regime
and provide the link with macroscopic scale quantities [5],
like Knudsen number and drift velocity. In particular, we
extract the heat wave propagation length (HWPL) directly
from the lattice thermal conductivity (LTC) calculated with
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V-BTE. We argue that our method to extract the HWPL
from the LTC in samples of different sizes, combined with a
measurement of the average phonon mean free path, can be
viewed as a gedanken experiment that could allow us to
determine the transition from the hydrodynamic-to-kinetic
regime in any material.
Several criteria are used in order to identify the hydro-

dynamic-to-kinetic transition. First, the picture of the heat
carried by single (uncorrelated) phonons with finite life-
times is valid in the kinetic regime only. Thus, a significant
difference between the LTC obtained by a solution of
V-BTE and the one obtained in the single mode approxi-
mation (SMA-BTE) is the indication that the hydrody-
namic regime is achieved. Second, we compare the
thermodynamic averages of the phonon-scattering rates
for normal and resistive processes Γn and ΓU, and the
hydrodynamic regime occurs when [20]

ΓU
av ≪ Γn

av: ð1Þ

Then, we address the question of the occurrence of
Poiseuille’s flow inside the hydrodynamic regime. Here as
well, various methods are employed, which now account
for the additional scattering rate by sample boundaries Γb.
We first use Guyer’s conditions [20],

ΓU
av < Γb

av < Γn
av ð2Þ

and find the temperature interval in which second sound
is calculated to be observable. In the second method, we
extract the HWPL directly from the LTC calculated with
V-BTE and compare it to the sample size, which sets
the threshold for the second sound observability. Above the
threshold, the heat wave is damped before reaching the
sample boundary.
The thermodynamic averages of phonon-scattering rates

for normal, umklapp, and boundary collisional processes
that condition the transport regime read

Γi
av ¼

P
νCνΓi

νP
νCν

ð3Þ

where Cν is the specific heat (see below) of the phonon
mode ν ¼ fqjg and the index i ¼ n, U, b stands for
normal, umklapp, and extrinsic (boundary) scattering,
respectively. Besides the scattering rate (or inverse relax-
ation time), the quantities characterizing heat transport
are the drift velocity v of the heat carriers defined below
and the phonon propagation length λ ¼ vΓ−1

av , which is the
characteristic distance that heat carrying phonons cover
before damping. As a source of damping, we consider, in
infinite samples, either umklapp processes only,

λhydroð∞Þ ¼ v=ΓU
av; ð4Þ

or their combination with normal processes through
Matthiessen’s rule,

λgasð∞Þ ¼ v=ðΓU
av þ Γn

avÞ: ð5Þ

When scattering by sample boundaries is accounted for, the
phonon propagation length reads λðLCasÞ instead of λð∞Þ in
Eqs. (4) and (5), where Casimir’s length LCas represents the
smallest dimension of the sample or nanostructure.
In bismuth, the transport is anisotropic and has compo-

nents along the trigonal axis (∥) and perpendicular (⊥) to it,
i.e., along the binary and bisectrix directions. The drift
velocity in these directions reads [9]

v2j ¼
P

νCνcνj · cνjP
νCν

; ð6Þ

where j stands for the ∥ or ⊥ direction and cν is the
phonon group velocity. In the thermodynamic averages,
the specific heat of a phonon mode is calculated as
Cν ¼ n0νðn0ν þ 1Þ½ðℏωνÞ2=kBT2�, where n0 stands for the
temperature (T)-dependent Bose-Einstein phonon occupa-
tion number and ων is the phonon frequency.
The LTC, third-order anharmonic constants of the

normal and umklapp phonon interactions, and thermody-
namical averages have been calculated on a 28 × 28 × 28
q-point grid in the Brillouin zone, but for the drift velocity
below 2 K, which required a 40 × 40 × 40 grid. Details of
the calculation are given in the Supplemental Material [21].
We have used the wire geometry for boundary scattering
with Casimir’s model, Γb ¼ ½n0νðn0ν þ 1Þjcbν j=FLCas�, where
cbν is the group velocity in the direction of the smallest
dimension. Specularity [24–26] is neglected and ð1=FÞ
accounts for the geometrical ratio of LCas over the finite
(yet large) dimension along the heat transport direction
[19,21,27–29]. Varying ð1=FÞ by 2� 1 (Fig. 1) has little
consequence on κ⊥ above T ¼ 2 K.
Remarkably, our calculated LTC shows the same evo-

lution as the experimental one over 3 orders of magnitude
(Fig. 1, respectively, black dotted and green dashed lines),
and the various regimes of heat transport are excellently
described from ambient temperature down to 2 K. The LTC
increases as T−1 with the decrease of temperature down to
10 K. Then, in the absence of scattering other than phonon-
phonon interaction, the LTC shows an exponential growth
below 10 K (black solid line). This behavior is directly due
to the weakness of resistive (umklapp) processes.
The account for boundary scattering makes the LTC

value remain finite even in the asymptotic limit. Moreover,
the theoretical curves satisfactorily explain the experimen-
tal behavior of the LTC and, in particular, the position of the
conductivity maximum Tmax, which is found to be 3.2 K for
the 9.72 mm wire, in extremely satisfactory agreement with
the maximum at 3.6 K observed in experiment (Fig. 1,
respectively, black dotted and green dashed lines). Further
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decrease of temperature leads to a decrease of the LTC
with a decay law gradually approaching the T3 behavior
expected for a regime in which boundary scattering
dominates.
The first sign of the transition from the kinetic to hydro-

dynamic regime around 3 K in infinite samples is demon-
strated in Fig. 1 by a large ð> 102Þ difference between our
V- and SMA-BTE results for the LTC (respectively, black
and red solid lines). This result shows that the repopulation
of phonon states due to normal processes plays an important
role, invalidating the SMA picture in which individual
phonons have lifetimes and propagation lengths determined
by all of the collisional processes [normal and umklapp,
Eq. (5)]. The same conclusion can be drawn by considering
Fig. 2, where, around 3 K, normal processes dominate over
the resistive ones (umklapp) by more than one order of
magnitude, so that Eq. (1) is fulfilled.
The same difference in the LTC between V- and SMA-

BTE is found in the presence of sample boundaries (Fig. 1,
respectively, black and red dotted lines) and, remarkably,
the average extrinsic scattering rate Γb

av calculated with
Casimir’s length LCas ¼ 3.86 mm (Fig. 2, black dotted
line) lays in between the average normal Γn

av and umklapp
ΓU
av scattering rates and thus satisfy the criterion of Eq. (2)

for the existence of Poiseuille’s flow and second sound
observability [20]. The temperature interval calculated with
Eq. (2) is 1.5 < T < 3.6 K, in perfect agreement with the

temperature range 1.5 < T < 3.5 K, in which second
sound has been observed experimentally in the trigonal
direction (gray shaded region) [10]. For LCas ¼ 9.06 mm in
the binary direction (red dot-dashed line), the calculated
interval is 1.3 < T < 3.4 K, a temperature range slightly
more extended than the experimental one, 3.0 < T <
3.48 K [10]. In our calculations, Poiseuille’s regime ends
for temperatures lower than 1.5 K, where phonon scattering
by sample boundaries becomes significant (Fig. 2).
However, the average scattering rates discussed so far do

not contain any information about repopulation mecha-
nisms [34]. To account for them, we extract a heat wave
propagation length Lh that we define by the criterion

κðT; LCas ¼ LhÞ ¼ κðT;∞Þ=e; ð7Þ

where κðT;∞Þ denotes the LTC obtained for an infinite
sample at a given temperature, and κðT; LCasÞ denotes
the LTC obtained for a sample of finite dimension. The
extracted HWPL Lh is the cylindrical wire diameter LCas

needed to reduce κðT;∞Þ by e (Fig. 3, filled disks, and
Supplemental Material for the trigonal direction [36]).
Remarkably, at low temperatures, Lh is found to be close

to the phonon propagation length computed with umklapp
processes only [Eq. (4)]. These resistive processes damp the
heat wave, thus defining the wave traveling distance between
the instant of heat wave generation to complete diffusion.

FIG. 2. Temperature dependence of the thermodynamic aver-
age of the anharmonic scattering rates for normal and umklapp
processes (respectively, black solid and blue dashed line) and of
the (boundary) extrinsic scattering rates (ESRs) (dashed black,
dot-dashed red and green lines). ESRs have been calculated for a
wire geometry using LCas ¼ 3.86 [32] and LCas ¼ 9.06 mm [33],
and with LCas ¼ 9.72 mm [30] as in Fig 1. ESRs for LCas ¼ 9.06
and LCas ¼ 9.72 mm are hardly distinguishable on the scale of
the figure. The shaded region corresponds to the temperature
interval in which a second sound peak has been reported,
1.5 < T < 3.5 K for a length of 3.86 mm in the trigonal
propagation direction [10].

FIG. 1. Temperature dependence of the LTC in the binary
direction for a single crystal without (solid lines) or with (dotted
lines) millimeter-sized sample boundaries (MSSB). Black curves:
Exact variational calculation (V-BTE). Single mode approxima-
tion (SMA-BTE), (Red curves). MSSB modeled with the wire
geometry and LCas ¼ 9.72 mm [30]. LTC extracted by us from
experiment of Ref. [31] for T > 20 K (Green dashed lines); for
T < 20 K, LTC from a sample having a rectangular cross section
8.8 × 8.6 mm2 (Ref. [11]). We used the T-independent bulk
value of 6 WðKmÞ−1 [27,28] of the electronic contribution to
extract the LTC from the total thermal conductivity of Bi [11].
The error bar in our calculations results from the variation of the
geometrical factor ð1=FÞ ¼ 2� 1.
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A strong presence of normal processes, in turn, favors heat
conduction and second sound behavior. With the increase of
temperature, Lh becomes close to the phonon propagation
length, accounting for both umklapp and normal processes
of Eq. (5), i.e., of an uncorrelated phonon gas (empty
circles). We see that the behavior of Lh as a function of
temperature is the fingerprint of the transition from the
hydrodynamic-to-kinetic regime. The temperature range and
sample dimension in which observations of second sound
are available in the binary direction (red line segment) are in
extremely satisfactory agreement with the calculations,
which support the occurrence of second sound at 3.0 K
for a 9.72 mm wire. Figure 3 enables us also to predict the
occurrence of second sound at other temperatures and
sample sizes, for instance, at 4.1 K in a 1 mm size wire.
We emphasize that Lh is a measurable quantity, provided

that LTC can be measured in samples of many different
sizes, including very large ones. In that sense, the results
presented in Fig. 3 can be viewed as a gedanken experiment
in which (i) first, one needs to determine the heat wave
propagation length from the thermal conductivity measured
in samples of different sizes, as described with Eq. (7), and
(ii) second, its combination with a measurement of the
average phonon mean free path in a bulk sample, given by
Eq. (5), as done, for example, in attenuation measurement
experiments [39], could, in principle, lead to the identi-
fication of the temperature and sample size ranges in which
Poiseuille’s flow occurs.
We turn to the characterization of Poiseuille’s flow,

defined above as the range of temperatures and propagation

lengths where Lh and λhydro are close to each other. For
this purpose, we use common hydrodynamic quantities:
Knudsen number (Kn) and drift velocity. The former is
defined as the ratio between the HWPL and the character-
istic dimension of transport,

Kn ¼ Lh

LCas : ð8Þ

Interestingly, the transition between the hydrodynamic and
kinetic regime is found for a calculated Knudsen number
Kn ≈ 0.58 at T ¼ 3.5 K in agreement with the criteria of
phonon hydrodynamics 0.1≲ Kn≲ 10 [5] (Fig. 4, bottom
panel, black solid line). Our drift velocity calculated with
Eq. (6) in the binary direction shows a maximum of
v⊥ ¼ 770 m=s at 3.0 K, whose value matches well with
the second sound velocity v ¼ 780 m=s measured in
Ref. [10]. At variance with the experiment [10], we find,
however, a dependence on the propagation direction (top
panel, black solid and red dashed lines).
In conclusion, repopulation of phonon states by normal

processes turns out to be particularly strong at low
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FIG. 3. Heat wave propagation length LhðTÞ extracted from
the LTC calculations in the binary direction. Lh obtained with
V-BTE, accounting for phonon repopulation, (Solid line with
black filled disks). Lh obtained with SMA-BTE, (Solid line
with empty circles). Phonon propagation length λhydro of Eq. (4),
(Black dashed line). Phonon propagation length λgas of Eq. (5),
(Black dotted line). The red line segment marks the ranges of
temperatures, from 3.0 to 3.48 K, and sample dimension,
9.06 mm, in which a second sound peak has been reported in
the binary direction [10]. FIG. 4. Heat flow characteristics in Bi as a function of T. (a) Drift

velocity v in the binary (⊥) and trigonal (∥) directions (respectively,
black solid and red dashed lines). Saturated second sound velocity
measured at 3 K [10], (Symbol). (b) Knudsen number for a wire of
Casimir’s length LCas ¼ 9.72 mm (black solid line). The ratio of
the phonon propagation length in the hydrodynamic (gas) regime
over LCas is given by the dashed (dotted) line. The shaded region
3.0 < T < 3.48 K corresponds to the interval in which second
sound has been observed in the binary direction [10].
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temperatures and leads to the occurrence of the hydro-
dynamic regime in bismuth. We have shown that this effect
is remarkably well accounted for in the exact solution of the
BTE. This enables us to extract from the lattice thermal
conductivity a characteristic length, the HWPL, whose
behavior as a function of temperature, when compared to
the phonon mean free path, is a fingerprint of the hydro-
dynamic-to-kinetic transition regime. Our calculated
HWPL matches with macroscopic sample dimensions in
which second sound was experimentally observed [10] and,
together with Knudsen number and drift velocity, allow us
to make the link with phonon hydrodynamics.
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